Browse Source

Refactor models/export.py arguments (#3564)

* Refactor models/export.py arguments

* cleanup

* cleanup
modifyDataloader
Glenn Jocher GitHub 3 years ago
parent
commit
0e5cfdbea7
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 63 additions and 45 deletions
  1. +63
    -45
      models/export.py

+ 63
- 45
models/export.py View File

@@ -1,4 +1,4 @@
"""Exports a YOLOv5 *.pt model to TorchScript, ONNX, CoreML formats
"""Export a YOLOv5 *.pt model to TorchScript, ONNX, CoreML formats

Usage:
$ python path/to/models/export.py --weights yolov5s.pt --img 640 --batch 1
@@ -21,42 +21,39 @@ from utils.activations import Hardswish, SiLU
from utils.general import colorstr, check_img_size, check_requirements, file_size, set_logging
from utils.torch_utils import select_device

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--include', nargs='+', default=['torchscript', 'onnx', 'coreml'], help='include formats')
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
parser.add_argument('--train', action='store_true', help='model.train() mode')
parser.add_argument('--optimize', action='store_true', help='optimize TorchScript for mobile') # TorchScript-only
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes') # ONNX-only
parser.add_argument('--simplify', action='store_true', help='simplify ONNX model') # ONNX-only
parser.add_argument('--opset-version', type=int, default=12, help='ONNX opset version') # ONNX-only
opt = parser.parse_args()
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
opt.include = [x.lower() for x in opt.include]
print(opt)
set_logging()

def export(weights='./yolov5s.pt', # weights path
img_size=(640, 640), # image (height, width)
batch_size=1, # batch size
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
include=('torchscript', 'onnx', 'coreml'), # include formats
half=False, # FP16 half-precision export
inplace=False, # set YOLOv5 Detect() inplace=True
train=False, # model.train() mode
optimize=False, # TorchScript: optimize for mobile
dynamic=False, # ONNX: dynamic axes
simplify=False, # ONNX: simplify model
opset_version=12, # ONNX: opset version
):
t = time.time()
include = [x.lower() for x in include]
img_size *= 2 if len(img_size) == 1 else 1 # expand

# Load PyTorch model
device = select_device(opt.device)
assert not (opt.device.lower() == 'cpu' and opt.half), '--half only compatible with GPU export, i.e. use --device 0'
model = attempt_load(opt.weights, map_location=device) # load FP32 model
device = select_device(device)
assert not (device.type == 'cpu' and opt.half), '--half only compatible with GPU export, i.e. use --device 0'
model = attempt_load(weights, map_location=device) # load FP32 model
labels = model.names

# Input
gs = int(max(model.stride)) # grid size (max stride)
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
img_size = [check_img_size(x, gs) for x in img_size] # verify img_size are gs-multiples
img = torch.zeros(batch_size, 3, *img_size).to(device) # image size(1,3,320,192) iDetection

# Update model
if opt.half:
if half:
img, model = img.half(), model.half() # to FP16
model.train() if opt.train else model.eval() # training mode = no Detect() layer grid construction
model.train() if train else model.eval() # training mode = no Detect() layer grid construction
for k, m in model.named_modules():
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
if isinstance(m, models.common.Conv): # assign export-friendly activations
@@ -65,42 +62,42 @@ if __name__ == '__main__':
elif isinstance(m.act, nn.SiLU):
m.act = SiLU()
elif isinstance(m, models.yolo.Detect):
m.inplace = opt.inplace
m.onnx_dynamic = opt.dynamic
m.inplace = inplace
m.onnx_dynamic = dynamic
# m.forward = m.forward_export # assign forward (optional)

for _ in range(2):
y = model(img) # dry runs
print(f"\n{colorstr('PyTorch:')} starting from {opt.weights} ({file_size(opt.weights):.1f} MB)")
print(f"\n{colorstr('PyTorch:')} starting from {weights} ({file_size(weights):.1f} MB)")

# TorchScript export -----------------------------------------------------------------------------------------------
if 'torchscript' in opt.include or 'coreml' in opt.include:
if 'torchscript' in include or 'coreml' in include:
prefix = colorstr('TorchScript:')
try:
print(f'\n{prefix} starting export with torch {torch.__version__}...')
f = opt.weights.replace('.pt', '.torchscript.pt') # filename
f = weights.replace('.pt', '.torchscript.pt') # filename
ts = torch.jit.trace(model, img, strict=False)
(optimize_for_mobile(ts) if opt.optimize else ts).save(f)
(optimize_for_mobile(ts) if optimize else ts).save(f)
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
except Exception as e:
print(f'{prefix} export failure: {e}')

# ONNX export ------------------------------------------------------------------------------------------------------
if 'onnx' in opt.include:
if 'onnx' in include:
prefix = colorstr('ONNX:')
try:
import onnx

print(f'{prefix} starting export with onnx {onnx.__version__}...')
f = opt.weights.replace('.pt', '.onnx') # filename
torch.onnx.export(model, img, f, verbose=False, opset_version=opt.opset_version,
training=torch.onnx.TrainingMode.TRAINING if opt.train else torch.onnx.TrainingMode.EVAL,
do_constant_folding=not opt.train,
f = weights.replace('.pt', '.onnx') # filename
torch.onnx.export(model, img, f, verbose=False, opset_version=opset_version,
training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
do_constant_folding=not train,
input_names=['images'],
output_names=['output'],
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640)
'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
} if opt.dynamic else None)
} if dynamic else None)

# Checks
model_onnx = onnx.load(f) # load onnx model
@@ -108,7 +105,7 @@ if __name__ == '__main__':
# print(onnx.helper.printable_graph(model_onnx.graph)) # print

# Simplify
if opt.simplify:
if simplify:
try:
check_requirements(['onnx-simplifier'])
import onnxsim
@@ -116,8 +113,8 @@ if __name__ == '__main__':
print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
model_onnx, check = onnxsim.simplify(
model_onnx,
dynamic_input_shape=opt.dynamic,
input_shapes={'images': list(img.shape)} if opt.dynamic else None)
dynamic_input_shape=dynamic,
input_shapes={'images': list(img.shape)} if dynamic else None)
assert check, 'assert check failed'
onnx.save(model_onnx, f)
except Exception as e:
@@ -127,15 +124,15 @@ if __name__ == '__main__':
print(f'{prefix} export failure: {e}')

# CoreML export ----------------------------------------------------------------------------------------------------
if 'coreml' in opt.include:
if 'coreml' in include:
prefix = colorstr('CoreML:')
try:
import coremltools as ct

print(f'{prefix} starting export with coremltools {ct.__version__}...')
assert opt.train, 'CoreML exports should be placed in model.train() mode with `python export.py --train`'
assert train, 'CoreML exports should be placed in model.train() mode with `python export.py --train`'
model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
f = opt.weights.replace('.pt', '.mlmodel') # filename
f = weights.replace('.pt', '.mlmodel') # filename
model.save(f)
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
except Exception as e:
@@ -143,3 +140,24 @@ if __name__ == '__main__':

# Finish
print(f'\nExport complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.')


if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image (height, width)')
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--include', nargs='+', default=['torchscript', 'onnx', 'coreml'], help='include formats')
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
parser.add_argument('--train', action='store_true', help='model.train() mode')
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
parser.add_argument('--dynamic', action='store_true', help='ONNX: dynamic axes')
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
parser.add_argument('--opset-version', type=int, default=12, help='ONNX: opset version')
opt = parser.parse_args()
print(opt)
set_logging()

export(**vars(opt))

Loading…
Cancel
Save