|
|
@@ -1,4 +1,4 @@ |
|
|
|
"""Exports a YOLOv5 *.pt model to TorchScript, ONNX, CoreML formats |
|
|
|
"""Export a YOLOv5 *.pt model to TorchScript, ONNX, CoreML formats |
|
|
|
|
|
|
|
Usage: |
|
|
|
$ python path/to/models/export.py --weights yolov5s.pt --img 640 --batch 1 |
|
|
@@ -21,42 +21,39 @@ from utils.activations import Hardswish, SiLU |
|
|
|
from utils.general import colorstr, check_img_size, check_requirements, file_size, set_logging |
|
|
|
from utils.torch_utils import select_device |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') |
|
|
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width |
|
|
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size') |
|
|
|
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
|
|
parser.add_argument('--include', nargs='+', default=['torchscript', 'onnx', 'coreml'], help='include formats') |
|
|
|
parser.add_argument('--half', action='store_true', help='FP16 half-precision export') |
|
|
|
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True') |
|
|
|
parser.add_argument('--train', action='store_true', help='model.train() mode') |
|
|
|
parser.add_argument('--optimize', action='store_true', help='optimize TorchScript for mobile') # TorchScript-only |
|
|
|
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes') # ONNX-only |
|
|
|
parser.add_argument('--simplify', action='store_true', help='simplify ONNX model') # ONNX-only |
|
|
|
parser.add_argument('--opset-version', type=int, default=12, help='ONNX opset version') # ONNX-only |
|
|
|
opt = parser.parse_args() |
|
|
|
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand |
|
|
|
opt.include = [x.lower() for x in opt.include] |
|
|
|
print(opt) |
|
|
|
set_logging() |
|
|
|
|
|
|
|
def export(weights='./yolov5s.pt', # weights path |
|
|
|
img_size=(640, 640), # image (height, width) |
|
|
|
batch_size=1, # batch size |
|
|
|
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu |
|
|
|
include=('torchscript', 'onnx', 'coreml'), # include formats |
|
|
|
half=False, # FP16 half-precision export |
|
|
|
inplace=False, # set YOLOv5 Detect() inplace=True |
|
|
|
train=False, # model.train() mode |
|
|
|
optimize=False, # TorchScript: optimize for mobile |
|
|
|
dynamic=False, # ONNX: dynamic axes |
|
|
|
simplify=False, # ONNX: simplify model |
|
|
|
opset_version=12, # ONNX: opset version |
|
|
|
): |
|
|
|
t = time.time() |
|
|
|
include = [x.lower() for x in include] |
|
|
|
img_size *= 2 if len(img_size) == 1 else 1 # expand |
|
|
|
|
|
|
|
# Load PyTorch model |
|
|
|
device = select_device(opt.device) |
|
|
|
assert not (opt.device.lower() == 'cpu' and opt.half), '--half only compatible with GPU export, i.e. use --device 0' |
|
|
|
model = attempt_load(opt.weights, map_location=device) # load FP32 model |
|
|
|
device = select_device(device) |
|
|
|
assert not (device.type == 'cpu' and opt.half), '--half only compatible with GPU export, i.e. use --device 0' |
|
|
|
model = attempt_load(weights, map_location=device) # load FP32 model |
|
|
|
labels = model.names |
|
|
|
|
|
|
|
# Input |
|
|
|
gs = int(max(model.stride)) # grid size (max stride) |
|
|
|
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples |
|
|
|
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection |
|
|
|
img_size = [check_img_size(x, gs) for x in img_size] # verify img_size are gs-multiples |
|
|
|
img = torch.zeros(batch_size, 3, *img_size).to(device) # image size(1,3,320,192) iDetection |
|
|
|
|
|
|
|
# Update model |
|
|
|
if opt.half: |
|
|
|
if half: |
|
|
|
img, model = img.half(), model.half() # to FP16 |
|
|
|
model.train() if opt.train else model.eval() # training mode = no Detect() layer grid construction |
|
|
|
model.train() if train else model.eval() # training mode = no Detect() layer grid construction |
|
|
|
for k, m in model.named_modules(): |
|
|
|
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility |
|
|
|
if isinstance(m, models.common.Conv): # assign export-friendly activations |
|
|
@@ -65,42 +62,42 @@ if __name__ == '__main__': |
|
|
|
elif isinstance(m.act, nn.SiLU): |
|
|
|
m.act = SiLU() |
|
|
|
elif isinstance(m, models.yolo.Detect): |
|
|
|
m.inplace = opt.inplace |
|
|
|
m.onnx_dynamic = opt.dynamic |
|
|
|
m.inplace = inplace |
|
|
|
m.onnx_dynamic = dynamic |
|
|
|
# m.forward = m.forward_export # assign forward (optional) |
|
|
|
|
|
|
|
for _ in range(2): |
|
|
|
y = model(img) # dry runs |
|
|
|
print(f"\n{colorstr('PyTorch:')} starting from {opt.weights} ({file_size(opt.weights):.1f} MB)") |
|
|
|
print(f"\n{colorstr('PyTorch:')} starting from {weights} ({file_size(weights):.1f} MB)") |
|
|
|
|
|
|
|
# TorchScript export ----------------------------------------------------------------------------------------------- |
|
|
|
if 'torchscript' in opt.include or 'coreml' in opt.include: |
|
|
|
if 'torchscript' in include or 'coreml' in include: |
|
|
|
prefix = colorstr('TorchScript:') |
|
|
|
try: |
|
|
|
print(f'\n{prefix} starting export with torch {torch.__version__}...') |
|
|
|
f = opt.weights.replace('.pt', '.torchscript.pt') # filename |
|
|
|
f = weights.replace('.pt', '.torchscript.pt') # filename |
|
|
|
ts = torch.jit.trace(model, img, strict=False) |
|
|
|
(optimize_for_mobile(ts) if opt.optimize else ts).save(f) |
|
|
|
(optimize_for_mobile(ts) if optimize else ts).save(f) |
|
|
|
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') |
|
|
|
except Exception as e: |
|
|
|
print(f'{prefix} export failure: {e}') |
|
|
|
|
|
|
|
# ONNX export ------------------------------------------------------------------------------------------------------ |
|
|
|
if 'onnx' in opt.include: |
|
|
|
if 'onnx' in include: |
|
|
|
prefix = colorstr('ONNX:') |
|
|
|
try: |
|
|
|
import onnx |
|
|
|
|
|
|
|
print(f'{prefix} starting export with onnx {onnx.__version__}...') |
|
|
|
f = opt.weights.replace('.pt', '.onnx') # filename |
|
|
|
torch.onnx.export(model, img, f, verbose=False, opset_version=opt.opset_version, |
|
|
|
training=torch.onnx.TrainingMode.TRAINING if opt.train else torch.onnx.TrainingMode.EVAL, |
|
|
|
do_constant_folding=not opt.train, |
|
|
|
f = weights.replace('.pt', '.onnx') # filename |
|
|
|
torch.onnx.export(model, img, f, verbose=False, opset_version=opset_version, |
|
|
|
training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL, |
|
|
|
do_constant_folding=not train, |
|
|
|
input_names=['images'], |
|
|
|
output_names=['output'], |
|
|
|
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640) |
|
|
|
'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85) |
|
|
|
} if opt.dynamic else None) |
|
|
|
} if dynamic else None) |
|
|
|
|
|
|
|
# Checks |
|
|
|
model_onnx = onnx.load(f) # load onnx model |
|
|
@@ -108,7 +105,7 @@ if __name__ == '__main__': |
|
|
|
# print(onnx.helper.printable_graph(model_onnx.graph)) # print |
|
|
|
|
|
|
|
# Simplify |
|
|
|
if opt.simplify: |
|
|
|
if simplify: |
|
|
|
try: |
|
|
|
check_requirements(['onnx-simplifier']) |
|
|
|
import onnxsim |
|
|
@@ -116,8 +113,8 @@ if __name__ == '__main__': |
|
|
|
print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...') |
|
|
|
model_onnx, check = onnxsim.simplify( |
|
|
|
model_onnx, |
|
|
|
dynamic_input_shape=opt.dynamic, |
|
|
|
input_shapes={'images': list(img.shape)} if opt.dynamic else None) |
|
|
|
dynamic_input_shape=dynamic, |
|
|
|
input_shapes={'images': list(img.shape)} if dynamic else None) |
|
|
|
assert check, 'assert check failed' |
|
|
|
onnx.save(model_onnx, f) |
|
|
|
except Exception as e: |
|
|
@@ -127,15 +124,15 @@ if __name__ == '__main__': |
|
|
|
print(f'{prefix} export failure: {e}') |
|
|
|
|
|
|
|
# CoreML export ---------------------------------------------------------------------------------------------------- |
|
|
|
if 'coreml' in opt.include: |
|
|
|
if 'coreml' in include: |
|
|
|
prefix = colorstr('CoreML:') |
|
|
|
try: |
|
|
|
import coremltools as ct |
|
|
|
|
|
|
|
print(f'{prefix} starting export with coremltools {ct.__version__}...') |
|
|
|
assert opt.train, 'CoreML exports should be placed in model.train() mode with `python export.py --train`' |
|
|
|
assert train, 'CoreML exports should be placed in model.train() mode with `python export.py --train`' |
|
|
|
model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])]) |
|
|
|
f = opt.weights.replace('.pt', '.mlmodel') # filename |
|
|
|
f = weights.replace('.pt', '.mlmodel') # filename |
|
|
|
model.save(f) |
|
|
|
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') |
|
|
|
except Exception as e: |
|
|
@@ -143,3 +140,24 @@ if __name__ == '__main__': |
|
|
|
|
|
|
|
# Finish |
|
|
|
print(f'\nExport complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.') |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') |
|
|
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image (height, width)') |
|
|
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size') |
|
|
|
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
|
|
parser.add_argument('--include', nargs='+', default=['torchscript', 'onnx', 'coreml'], help='include formats') |
|
|
|
parser.add_argument('--half', action='store_true', help='FP16 half-precision export') |
|
|
|
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True') |
|
|
|
parser.add_argument('--train', action='store_true', help='model.train() mode') |
|
|
|
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile') |
|
|
|
parser.add_argument('--dynamic', action='store_true', help='ONNX: dynamic axes') |
|
|
|
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model') |
|
|
|
parser.add_argument('--opset-version', type=int, default=12, help='ONNX: opset version') |
|
|
|
opt = parser.parse_args() |
|
|
|
print(opt) |
|
|
|
set_logging() |
|
|
|
|
|
|
|
export(**vars(opt)) |