|
|
@@ -15,7 +15,7 @@ from utils.general import coco80_to_coco91_class, check_dataset, check_file, che |
|
|
|
non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path |
|
|
|
from utils.loss import compute_loss |
|
|
|
from utils.metrics import ap_per_class, ConfusionMatrix |
|
|
|
from utils.plots import plot_images, output_to_target |
|
|
|
from utils.plots import plot_images, output_to_target, plot_study_txt |
|
|
|
from utils.torch_utils import select_device, time_synchronized |
|
|
|
|
|
|
|
|
|
|
@@ -102,7 +102,6 @@ def test(data, |
|
|
|
img /= 255.0 # 0 - 255 to 0.0 - 1.0 |
|
|
|
targets = targets.to(device) |
|
|
|
nb, _, height, width = img.shape # batch size, channels, height, width |
|
|
|
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) |
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
|
# Run model |
|
|
@@ -115,8 +114,9 @@ def test(data, |
|
|
|
loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls |
|
|
|
|
|
|
|
# Run NMS |
|
|
|
t = time_synchronized() |
|
|
|
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels |
|
|
|
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_txt else [] # for autolabelling |
|
|
|
t = time_synchronized() |
|
|
|
output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb) |
|
|
|
t1 += time_synchronized() - t |
|
|
|
|
|
|
@@ -324,8 +324,9 @@ if __name__ == '__main__': |
|
|
|
y = [] # y axis |
|
|
|
for i in x: # img-size |
|
|
|
print('\nRunning %s point %s...' % (f, i)) |
|
|
|
r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json) |
|
|
|
r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json, |
|
|
|
plots=False) |
|
|
|
y.append(r + t) # results and times |
|
|
|
np.savetxt(f, y, fmt='%10.4g') # save |
|
|
|
os.system('zip -r study.zip study_*.txt') |
|
|
|
# utils.plots.plot_study_txt(f, x) # plot |
|
|
|
plot_study_txt(f, x) # plot |