|
|
@@ -16,7 +16,7 @@ |
|
|
|
"accelerator": "GPU", |
|
|
|
"widgets": { |
|
|
|
"application/vnd.jupyter.widget-state+json": { |
|
|
|
"d90eeb56398f458086e3b2b41dbd9fec": { |
|
|
|
"572de771c7b34c1481def33bd5ed690d": { |
|
|
|
"model_module": "@jupyter-widgets/controls", |
|
|
|
"model_name": "HBoxModel", |
|
|
|
"model_module_version": "1.5.0", |
|
|
@@ -31,14 +31,14 @@ |
|
|
|
"_view_name": "HBoxView", |
|
|
|
"box_style": "", |
|
|
|
"children": [ |
|
|
|
"IPY_MODEL_d91d8347f17349a4987cea29eac0a49c", |
|
|
|
"IPY_MODEL_8f4ffda703ac4348ab7edf1d12a188e1", |
|
|
|
"IPY_MODEL_8c2d91f564de45f8a403386eeeccac27" |
|
|
|
"IPY_MODEL_20c89dc0d82a4bdf8756bf5e34152292", |
|
|
|
"IPY_MODEL_61026f684725441db2a640e531807675", |
|
|
|
"IPY_MODEL_8d2e16d90e13449598d7b3fac75f78a3" |
|
|
|
], |
|
|
|
"layout": "IPY_MODEL_5dd95d3eda8b49f7910620edcdcbdcdc" |
|
|
|
"layout": "IPY_MODEL_a09d90f1bd374ece9a29bc6cfe07c072" |
|
|
|
} |
|
|
|
}, |
|
|
|
"d91d8347f17349a4987cea29eac0a49c": { |
|
|
|
"20c89dc0d82a4bdf8756bf5e34152292": { |
|
|
|
"model_module": "@jupyter-widgets/controls", |
|
|
|
"model_name": "HTMLModel", |
|
|
|
"model_module_version": "1.5.0", |
|
|
@@ -53,13 +53,13 @@ |
|
|
|
"_view_name": "HTMLView", |
|
|
|
"description": "", |
|
|
|
"description_tooltip": null, |
|
|
|
"layout": "IPY_MODEL_520e5b7e80eb450188261cffbc574d25", |
|
|
|
"layout": "IPY_MODEL_801e720897804703b4d32f99f84cc3b8", |
|
|
|
"placeholder": "", |
|
|
|
"style": "IPY_MODEL_3cef138c5f7743858bb0f87b65dd3c76", |
|
|
|
"style": "IPY_MODEL_c9fb2e268cc94d508d909b3b72ac9df3", |
|
|
|
"value": "100%" |
|
|
|
} |
|
|
|
}, |
|
|
|
"8f4ffda703ac4348ab7edf1d12a188e1": { |
|
|
|
"61026f684725441db2a640e531807675": { |
|
|
|
"model_module": "@jupyter-widgets/controls", |
|
|
|
"model_name": "FloatProgressModel", |
|
|
|
"model_module_version": "1.5.0", |
|
|
@@ -75,15 +75,15 @@ |
|
|
|
"bar_style": "success", |
|
|
|
"description": "", |
|
|
|
"description_tooltip": null, |
|
|
|
"layout": "IPY_MODEL_c3782c6dda80400ba7f8c5345624bf87", |
|
|
|
"layout": "IPY_MODEL_bfbc16e88df24fae93e8c80538e78273", |
|
|
|
"max": 818322941, |
|
|
|
"min": 0, |
|
|
|
"orientation": "horizontal", |
|
|
|
"style": "IPY_MODEL_11415bab172a4904b73e29ff60f6fce1", |
|
|
|
"style": "IPY_MODEL_d9ffa50bddb7455ca4d67ec220c4a10c", |
|
|
|
"value": 818322941 |
|
|
|
} |
|
|
|
}, |
|
|
|
"8c2d91f564de45f8a403386eeeccac27": { |
|
|
|
"8d2e16d90e13449598d7b3fac75f78a3": { |
|
|
|
"model_module": "@jupyter-widgets/controls", |
|
|
|
"model_name": "HTMLModel", |
|
|
|
"model_module_version": "1.5.0", |
|
|
@@ -98,13 +98,13 @@ |
|
|
|
"_view_name": "HTMLView", |
|
|
|
"description": "", |
|
|
|
"description_tooltip": null, |
|
|
|
"layout": "IPY_MODEL_eac18040908042dbae67a47d23e95b47", |
|
|
|
"layout": "IPY_MODEL_8be83ee30f804775aa55aeb021bf515b", |
|
|
|
"placeholder": "", |
|
|
|
"style": "IPY_MODEL_e0fc1d6eb478469c9098aa9518d7b358", |
|
|
|
"value": " 780M/780M [01:17<00:00, 17.7MB/s]" |
|
|
|
"style": "IPY_MODEL_78e5b8dba72942bfacfee54ceec53784", |
|
|
|
"value": " 780M/780M [01:28<00:00, 9.08MB/s]" |
|
|
|
} |
|
|
|
}, |
|
|
|
"5dd95d3eda8b49f7910620edcdcbdcdc": { |
|
|
|
"a09d90f1bd374ece9a29bc6cfe07c072": { |
|
|
|
"model_module": "@jupyter-widgets/base", |
|
|
|
"model_name": "LayoutModel", |
|
|
|
"model_module_version": "1.2.0", |
|
|
@@ -156,7 +156,7 @@ |
|
|
|
"width": null |
|
|
|
} |
|
|
|
}, |
|
|
|
"520e5b7e80eb450188261cffbc574d25": { |
|
|
|
"801e720897804703b4d32f99f84cc3b8": { |
|
|
|
"model_module": "@jupyter-widgets/base", |
|
|
|
"model_name": "LayoutModel", |
|
|
|
"model_module_version": "1.2.0", |
|
|
@@ -208,7 +208,7 @@ |
|
|
|
"width": null |
|
|
|
} |
|
|
|
}, |
|
|
|
"3cef138c5f7743858bb0f87b65dd3c76": { |
|
|
|
"c9fb2e268cc94d508d909b3b72ac9df3": { |
|
|
|
"model_module": "@jupyter-widgets/controls", |
|
|
|
"model_name": "DescriptionStyleModel", |
|
|
|
"model_module_version": "1.5.0", |
|
|
@@ -223,7 +223,7 @@ |
|
|
|
"description_width": "" |
|
|
|
} |
|
|
|
}, |
|
|
|
"c3782c6dda80400ba7f8c5345624bf87": { |
|
|
|
"bfbc16e88df24fae93e8c80538e78273": { |
|
|
|
"model_module": "@jupyter-widgets/base", |
|
|
|
"model_name": "LayoutModel", |
|
|
|
"model_module_version": "1.2.0", |
|
|
@@ -275,7 +275,7 @@ |
|
|
|
"width": null |
|
|
|
} |
|
|
|
}, |
|
|
|
"11415bab172a4904b73e29ff60f6fce1": { |
|
|
|
"d9ffa50bddb7455ca4d67ec220c4a10c": { |
|
|
|
"model_module": "@jupyter-widgets/controls", |
|
|
|
"model_name": "ProgressStyleModel", |
|
|
|
"model_module_version": "1.5.0", |
|
|
@@ -291,7 +291,7 @@ |
|
|
|
"description_width": "" |
|
|
|
} |
|
|
|
}, |
|
|
|
"eac18040908042dbae67a47d23e95b47": { |
|
|
|
"8be83ee30f804775aa55aeb021bf515b": { |
|
|
|
"model_module": "@jupyter-widgets/base", |
|
|
|
"model_name": "LayoutModel", |
|
|
|
"model_module_version": "1.2.0", |
|
|
@@ -343,7 +343,7 @@ |
|
|
|
"width": null |
|
|
|
} |
|
|
|
}, |
|
|
|
"e0fc1d6eb478469c9098aa9518d7b358": { |
|
|
|
"78e5b8dba72942bfacfee54ceec53784": { |
|
|
|
"model_module": "@jupyter-widgets/controls", |
|
|
|
"model_name": "DescriptionStyleModel", |
|
|
|
"model_module_version": "1.5.0", |
|
|
@@ -369,7 +369,7 @@ |
|
|
|
"colab_type": "text" |
|
|
|
}, |
|
|
|
"source": [ |
|
|
|
"<a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/colab/tutorial.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" |
|
|
|
"<a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/update%2Fcolab/tutorial.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" |
|
|
|
] |
|
|
|
}, |
|
|
|
{ |
|
|
@@ -403,7 +403,7 @@ |
|
|
|
"colab": { |
|
|
|
"base_uri": "https://localhost:8080/" |
|
|
|
}, |
|
|
|
"outputId": "ebf225bd-e109-4dbd-8561-3b15514ca47c" |
|
|
|
"outputId": "4bf03330-c2e8-43ec-c5da-b7f5e0b2b123" |
|
|
|
}, |
|
|
|
"source": [ |
|
|
|
"!git clone https://github.com/ultralytics/yolov5 # clone\n", |
|
|
@@ -420,14 +420,14 @@ |
|
|
|
"output_type": "stream", |
|
|
|
"name": "stderr", |
|
|
|
"text": [ |
|
|
|
"YOLOv5 🚀 v6.1-174-gc4cb7c6 torch 1.11.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n" |
|
|
|
"YOLOv5 🚀 v6.1-257-g669f707 Python-3.7.13 torch-1.11.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n" |
|
|
|
] |
|
|
|
}, |
|
|
|
{ |
|
|
|
"output_type": "stream", |
|
|
|
"name": "stdout", |
|
|
|
"text": [ |
|
|
|
"Setup complete ✅ (8 CPUs, 51.0 GB RAM, 38.2/166.8 GB disk)\n" |
|
|
|
"Setup complete ✅ (8 CPUs, 51.0 GB RAM, 38.8/166.8 GB disk)\n" |
|
|
|
] |
|
|
|
} |
|
|
|
] |
|
|
@@ -460,7 +460,7 @@ |
|
|
|
"colab": { |
|
|
|
"base_uri": "https://localhost:8080/" |
|
|
|
}, |
|
|
|
"outputId": "2f43338d-f533-4277-ef9f-b37b565e2702" |
|
|
|
"outputId": "1d1bb361-c8f3-4ddd-8a19-864bb993e7ac" |
|
|
|
}, |
|
|
|
"source": [ |
|
|
|
"!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images\n", |
|
|
@@ -473,16 +473,16 @@ |
|
|
|
"name": "stdout", |
|
|
|
"text": [ |
|
|
|
"\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False\n", |
|
|
|
"YOLOv5 🚀 v6.1-174-gc4cb7c6 torch 1.11.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n", |
|
|
|
"YOLOv5 🚀 v6.1-257-g669f707 Python-3.7.13 torch-1.11.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n", |
|
|
|
"\n", |
|
|
|
"Downloading https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt to yolov5s.pt...\n", |
|
|
|
"100% 14.1M/14.1M [00:00<00:00, 220MB/s]\n", |
|
|
|
"100% 14.1M/14.1M [00:00<00:00, 225MB/s]\n", |
|
|
|
"\n", |
|
|
|
"Fusing layers... \n", |
|
|
|
"YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients\n", |
|
|
|
"image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.012s)\n", |
|
|
|
"image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.013s)\n", |
|
|
|
"Speed: 0.5ms pre-process, 12.5ms inference, 17.3ms NMS per image at shape (1, 3, 640, 640)\n", |
|
|
|
"image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.013s)\n", |
|
|
|
"image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.015s)\n", |
|
|
|
"Speed: 0.6ms pre-process, 14.1ms inference, 23.9ms NMS per image at shape (1, 3, 640, 640)\n", |
|
|
|
"Results saved to \u001b[1mruns/detect/exp\u001b[0m\n" |
|
|
|
] |
|
|
|
} |
|
|
@@ -526,20 +526,20 @@ |
|
|
|
"base_uri": "https://localhost:8080/", |
|
|
|
"height": 49, |
|
|
|
"referenced_widgets": [ |
|
|
|
"d90eeb56398f458086e3b2b41dbd9fec", |
|
|
|
"d91d8347f17349a4987cea29eac0a49c", |
|
|
|
"8f4ffda703ac4348ab7edf1d12a188e1", |
|
|
|
"8c2d91f564de45f8a403386eeeccac27", |
|
|
|
"5dd95d3eda8b49f7910620edcdcbdcdc", |
|
|
|
"520e5b7e80eb450188261cffbc574d25", |
|
|
|
"3cef138c5f7743858bb0f87b65dd3c76", |
|
|
|
"c3782c6dda80400ba7f8c5345624bf87", |
|
|
|
"11415bab172a4904b73e29ff60f6fce1", |
|
|
|
"eac18040908042dbae67a47d23e95b47", |
|
|
|
"e0fc1d6eb478469c9098aa9518d7b358" |
|
|
|
"572de771c7b34c1481def33bd5ed690d", |
|
|
|
"20c89dc0d82a4bdf8756bf5e34152292", |
|
|
|
"61026f684725441db2a640e531807675", |
|
|
|
"8d2e16d90e13449598d7b3fac75f78a3", |
|
|
|
"a09d90f1bd374ece9a29bc6cfe07c072", |
|
|
|
"801e720897804703b4d32f99f84cc3b8", |
|
|
|
"c9fb2e268cc94d508d909b3b72ac9df3", |
|
|
|
"bfbc16e88df24fae93e8c80538e78273", |
|
|
|
"d9ffa50bddb7455ca4d67ec220c4a10c", |
|
|
|
"8be83ee30f804775aa55aeb021bf515b", |
|
|
|
"78e5b8dba72942bfacfee54ceec53784" |
|
|
|
] |
|
|
|
}, |
|
|
|
"outputId": "26f3c005-cc13-4b7c-8523-844b56a0b0e3" |
|
|
|
"outputId": "47c358af-138d-42d9-ca89-4364283df9e3" |
|
|
|
}, |
|
|
|
"source": [ |
|
|
|
"# Download COCO val\n", |
|
|
@@ -557,7 +557,7 @@ |
|
|
|
"application/vnd.jupyter.widget-view+json": { |
|
|
|
"version_major": 2, |
|
|
|
"version_minor": 0, |
|
|
|
"model_id": "d90eeb56398f458086e3b2b41dbd9fec" |
|
|
|
"model_id": "572de771c7b34c1481def33bd5ed690d" |
|
|
|
} |
|
|
|
}, |
|
|
|
"metadata": {} |
|
|
@@ -571,7 +571,7 @@ |
|
|
|
"colab": { |
|
|
|
"base_uri": "https://localhost:8080/" |
|
|
|
}, |
|
|
|
"outputId": "c73097d6-02a8-43af-9962-ba6500b793ff" |
|
|
|
"outputId": "979fe4c2-a058-44de-b401-3cb67878a1b9" |
|
|
|
}, |
|
|
|
"source": [ |
|
|
|
"# Run YOLOv5x on COCO val\n", |
|
|
@@ -584,35 +584,35 @@ |
|
|
|
"name": "stdout", |
|
|
|
"text": [ |
|
|
|
"\u001b[34m\u001b[1mval: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False\n", |
|
|
|
"YOLOv5 🚀 v6.1-174-gc4cb7c6 torch 1.11.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n", |
|
|
|
"YOLOv5 🚀 v6.1-257-g669f707 Python-3.7.13 torch-1.11.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n", |
|
|
|
"\n", |
|
|
|
"Downloading https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x.pt to yolov5x.pt...\n", |
|
|
|
"100% 166M/166M [00:05<00:00, 33.5MB/s]\n", |
|
|
|
"100% 166M/166M [00:04<00:00, 39.4MB/s]\n", |
|
|
|
"\n", |
|
|
|
"Fusing layers... \n", |
|
|
|
"YOLOv5x summary: 444 layers, 86705005 parameters, 0 gradients\n", |
|
|
|
"Downloading https://ultralytics.com/assets/Arial.ttf to /root/.config/Ultralytics/Arial.ttf...\n", |
|
|
|
"100% 755k/755k [00:00<00:00, 49.6MB/s]\n", |
|
|
|
"\u001b[34m\u001b[1mval: \u001b[0mScanning '/content/datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<00:00, 10667.19it/s]\n", |
|
|
|
"100% 755k/755k [00:00<00:00, 47.9MB/s]\n", |
|
|
|
"\u001b[34m\u001b[1mval: \u001b[0mScanning '/content/datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<00:00, 8742.34it/s]\n", |
|
|
|
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val2017.cache\n", |
|
|
|
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [00:58<00:00, 2.70it/s]\n", |
|
|
|
" all 5000 36335 0.743 0.626 0.683 0.496\n", |
|
|
|
"Speed: 0.1ms pre-process, 4.8ms inference, 1.2ms NMS per image at shape (32, 3, 640, 640)\n", |
|
|
|
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [01:11<00:00, 2.21it/s]\n", |
|
|
|
" all 5000 36335 0.743 0.625 0.683 0.504\n", |
|
|
|
"Speed: 0.1ms pre-process, 4.9ms inference, 1.2ms NMS per image at shape (32, 3, 640, 640)\n", |
|
|
|
"\n", |
|
|
|
"Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json...\n", |
|
|
|
"loading annotations into memory...\n", |
|
|
|
"Done (t=0.38s)\n", |
|
|
|
"Done (t=0.42s)\n", |
|
|
|
"creating index...\n", |
|
|
|
"index created!\n", |
|
|
|
"Loading and preparing results...\n", |
|
|
|
"DONE (t=5.42s)\n", |
|
|
|
"DONE (t=4.91s)\n", |
|
|
|
"creating index...\n", |
|
|
|
"index created!\n", |
|
|
|
"Running per image evaluation...\n", |
|
|
|
"Evaluate annotation type *bbox*\n", |
|
|
|
"DONE (t=72.67s).\n", |
|
|
|
"DONE (t=77.89s).\n", |
|
|
|
"Accumulating evaluation results...\n", |
|
|
|
"DONE (t=13.48s).\n", |
|
|
|
"DONE (t=15.36s).\n", |
|
|
|
" Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.506\n", |
|
|
|
" Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.688\n", |
|
|
|
" Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.549\n", |
|
|
@@ -731,13 +731,13 @@ |
|
|
|
"colab": { |
|
|
|
"base_uri": "https://localhost:8080/" |
|
|
|
}, |
|
|
|
"outputId": "6735ae8b-fd75-4ecd-9d32-71d1881e2481" |
|
|
|
"outputId": "be9424b5-34d6-4de0-e951-2c5ae334721e" |
|
|
|
}, |
|
|
|
"source": [ |
|
|
|
"# Train YOLOv5s on COCO128 for 3 epochs\n", |
|
|
|
"!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache" |
|
|
|
], |
|
|
|
"execution_count": 5, |
|
|
|
"execution_count": 7, |
|
|
|
"outputs": [ |
|
|
|
{ |
|
|
|
"output_type": "stream", |
|
|
@@ -745,17 +745,12 @@ |
|
|
|
"text": [ |
|
|
|
"\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest\n", |
|
|
|
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n", |
|
|
|
"YOLOv5 🚀 v6.1-174-gc4cb7c6 torch 1.11.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n", |
|
|
|
"YOLOv5 🚀 v6.1-257-g669f707 Python-3.7.13 torch-1.11.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n", |
|
|
|
"\n", |
|
|
|
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n", |
|
|
|
"\u001b[34m\u001b[1mWeights & Biases: \u001b[0mrun 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs (RECOMMENDED)\n", |
|
|
|
"\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n", |
|
|
|
"\n", |
|
|
|
"Dataset not found ⚠, missing paths ['/content/datasets/coco128/images/train2017']\n", |
|
|
|
"Downloading https://ultralytics.com/assets/coco128.zip to coco128.zip...\n", |
|
|
|
"100% 6.66M/6.66M [00:00<00:00, 41.0MB/s]\n", |
|
|
|
"Dataset download success ✅ (0.9s), saved to \u001b[1m/content/datasets\u001b[0m\n", |
|
|
|
"\n", |
|
|
|
" from n params module arguments \n", |
|
|
|
" 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n", |
|
|
|
" 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n", |
|
|
@@ -782,17 +777,17 @@ |
|
|
|
" 22 [-1, 10] 1 0 models.common.Concat [1] \n", |
|
|
|
" 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n", |
|
|
|
" 24 [17, 20, 23] 1 229245 models.yolo.Detect [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n", |
|
|
|
"Model summary: 270 layers, 7235389 parameters, 7235389 gradients, 16.5 GFLOPs\n", |
|
|
|
"Model summary: 270 layers, 7235389 parameters, 7235389 gradients\n", |
|
|
|
"\n", |
|
|
|
"Transferred 349/349 items from yolov5s.pt\n", |
|
|
|
"\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n", |
|
|
|
"Scaled weight_decay = 0.0005\n", |
|
|
|
"\u001b[34m\u001b[1moptimizer:\u001b[0m SGD with parameter groups 57 weight (no decay), 60 weight, 60 bias\n", |
|
|
|
"\u001b[34m\u001b[1malbumentations: \u001b[0mversion 1.0.3 required by YOLOv5, but version 0.1.12 is currently installed\n", |
|
|
|
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning '/content/datasets/coco128/labels/train2017' images and labels...128 found, 0 missing, 2 empty, 0 corrupt: 100% 128/128 [00:00<00:00, 405.04it/s]\n", |
|
|
|
"\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco128/labels/train2017.cache\n", |
|
|
|
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 977.19it/s]\n", |
|
|
|
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning '/content/datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n", |
|
|
|
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 978.19it/s]\n", |
|
|
|
"\u001b[34m\u001b[1mval: \u001b[0mScanning '/content/datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n", |
|
|
|
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 219.82it/s]\n", |
|
|
|
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 207.08it/s]\n", |
|
|
|
"Plotting labels to runs/train/exp/labels.jpg... \n", |
|
|
|
"\n", |
|
|
|
"\u001b[34m\u001b[1mAutoAnchor: \u001b[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅\n", |
|
|
@@ -802,19 +797,19 @@ |
|
|
|
"Starting training for 3 epochs...\n", |
|
|
|
"\n", |
|
|
|
" Epoch gpu_mem box obj cls labels img_size\n", |
|
|
|
" 0/2 3.72G 0.04609 0.06259 0.01898 260 640: 100% 8/8 [00:03<00:00, 2.30it/s]\n", |
|
|
|
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 6.54it/s]\n", |
|
|
|
" all 128 929 0.727 0.63 0.717 0.469\n", |
|
|
|
" 0/2 3.72G 0.04609 0.06258 0.01898 260 640: 100% 8/8 [00:03<00:00, 2.38it/s]\n", |
|
|
|
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.45it/s]\n", |
|
|
|
" all 128 929 0.724 0.638 0.718 0.477\n", |
|
|
|
"\n", |
|
|
|
" Epoch gpu_mem box obj cls labels img_size\n", |
|
|
|
" 1/2 4.57G 0.04466 0.06904 0.01721 210 640: 100% 8/8 [00:00<00:00, 8.54it/s]\n", |
|
|
|
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 6.79it/s]\n", |
|
|
|
" all 128 929 0.76 0.646 0.746 0.48\n", |
|
|
|
" 1/2 4.57G 0.04466 0.06904 0.01721 210 640: 100% 8/8 [00:00<00:00, 8.21it/s]\n", |
|
|
|
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.62it/s]\n", |
|
|
|
" all 128 929 0.732 0.658 0.746 0.488\n", |
|
|
|
"\n", |
|
|
|
" Epoch gpu_mem box obj cls labels img_size\n", |
|
|
|
" 2/2 4.57G 0.04489 0.06446 0.01634 269 640: 100% 8/8 [00:00<00:00, 9.18it/s]\n", |
|
|
|
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 6.04it/s]\n", |
|
|
|
" all 128 929 0.807 0.641 0.76 0.494\n", |
|
|
|
" 2/2 4.57G 0.04489 0.06445 0.01634 269 640: 100% 8/8 [00:00<00:00, 9.12it/s]\n", |
|
|
|
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.59it/s]\n", |
|
|
|
" all 128 929 0.783 0.652 0.758 0.502\n", |
|
|
|
"\n", |
|
|
|
"3 epochs completed in 0.003 hours.\n", |
|
|
|
"Optimizer stripped from runs/train/exp/weights/last.pt, 14.9MB\n", |
|
|
@@ -822,80 +817,80 @@ |
|
|
|
"\n", |
|
|
|
"Validating runs/train/exp/weights/best.pt...\n", |
|
|
|
"Fusing layers... \n", |
|
|
|
"Model summary: 213 layers, 7225885 parameters, 0 gradients, 16.5 GFLOPs\n", |
|
|
|
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:03<00:00, 1.31it/s]\n", |
|
|
|
" all 128 929 0.809 0.642 0.76 0.493\n", |
|
|
|
" person 128 254 0.872 0.693 0.82 0.519\n", |
|
|
|
" bicycle 128 6 0.75 0.501 0.623 0.376\n", |
|
|
|
" car 128 46 0.666 0.521 0.557 0.207\n", |
|
|
|
" motorcycle 128 5 1 0.919 0.995 0.678\n", |
|
|
|
" airplane 128 6 0.948 1 0.995 0.751\n", |
|
|
|
" bus 128 7 0.84 0.714 0.723 0.642\n", |
|
|
|
" train 128 3 1 0.631 0.863 0.561\n", |
|
|
|
" truck 128 12 0.638 0.417 0.481 0.241\n", |
|
|
|
" boat 128 6 1 0.299 0.418 0.0863\n", |
|
|
|
" traffic light 128 14 0.637 0.254 0.372 0.225\n", |
|
|
|
" stop sign 128 2 0.812 1 0.995 0.796\n", |
|
|
|
" bench 128 9 0.737 0.444 0.615 0.233\n", |
|
|
|
" bird 128 16 0.965 1 0.995 0.666\n", |
|
|
|
" cat 128 4 0.856 1 0.995 0.797\n", |
|
|
|
" dog 128 9 1 0.65 0.886 0.637\n", |
|
|
|
" horse 128 2 0.822 1 0.995 0.647\n", |
|
|
|
" elephant 128 17 0.963 0.882 0.932 0.69\n", |
|
|
|
" bear 128 1 0.699 1 0.995 0.895\n", |
|
|
|
" zebra 128 4 0.877 1 0.995 0.947\n", |
|
|
|
" giraffe 128 9 0.898 1 0.995 0.644\n", |
|
|
|
" backpack 128 6 0.994 0.667 0.808 0.333\n", |
|
|
|
" umbrella 128 18 0.828 0.667 0.865 0.493\n", |
|
|
|
" handbag 128 19 0.882 0.211 0.357 0.175\n", |
|
|
|
" tie 128 7 0.834 0.719 0.837 0.493\n", |
|
|
|
" suitcase 128 4 0.853 1 0.995 0.522\n", |
|
|
|
" frisbee 128 5 0.706 0.8 0.8 0.74\n", |
|
|
|
" skis 128 1 0.796 1 0.995 0.398\n", |
|
|
|
" snowboard 128 7 0.903 0.714 0.852 0.546\n", |
|
|
|
" sports ball 128 6 0.621 0.667 0.603 0.293\n", |
|
|
|
" kite 128 10 0.846 0.553 0.625 0.259\n", |
|
|
|
" baseball bat 128 4 0.465 0.25 0.384 0.163\n", |
|
|
|
" baseball glove 128 7 0.731 0.429 0.466 0.304\n", |
|
|
|
" skateboard 128 5 1 0.557 0.858 0.49\n", |
|
|
|
" tennis racket 128 7 0.78 0.429 0.635 0.298\n", |
|
|
|
" bottle 128 18 0.55 0.339 0.578 0.283\n", |
|
|
|
" wine glass 128 16 0.7 0.938 0.925 0.499\n", |
|
|
|
" cup 128 36 0.802 0.789 0.844 0.492\n", |
|
|
|
" fork 128 6 1 0.326 0.439 0.302\n", |
|
|
|
" knife 128 16 0.779 0.5 0.68 0.392\n", |
|
|
|
" spoon 128 22 0.821 0.417 0.629 0.338\n", |
|
|
|
" bowl 128 28 0.781 0.607 0.753 0.51\n", |
|
|
|
" banana 128 1 0.923 1 0.995 0.0995\n", |
|
|
|
"Model summary: 213 layers, 7225885 parameters, 0 gradients\n", |
|
|
|
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:03<00:00, 1.27it/s]\n", |
|
|
|
" all 128 929 0.785 0.653 0.761 0.503\n", |
|
|
|
" person 128 254 0.866 0.71 0.82 0.531\n", |
|
|
|
" bicycle 128 6 0.764 0.546 0.62 0.375\n", |
|
|
|
" car 128 46 0.615 0.556 0.565 0.211\n", |
|
|
|
" motorcycle 128 5 1 0.952 0.995 0.761\n", |
|
|
|
" airplane 128 6 0.937 1 0.995 0.751\n", |
|
|
|
" bus 128 7 0.816 0.714 0.723 0.642\n", |
|
|
|
" train 128 3 0.985 0.667 0.863 0.561\n", |
|
|
|
" truck 128 12 0.553 0.417 0.481 0.258\n", |
|
|
|
" boat 128 6 1 0.317 0.418 0.132\n", |
|
|
|
" traffic light 128 14 0.668 0.287 0.372 0.227\n", |
|
|
|
" stop sign 128 2 0.789 1 0.995 0.796\n", |
|
|
|
" bench 128 9 0.691 0.444 0.614 0.265\n", |
|
|
|
" bird 128 16 0.955 1 0.995 0.666\n", |
|
|
|
" cat 128 4 0.811 1 0.995 0.797\n", |
|
|
|
" dog 128 9 1 0.657 0.886 0.637\n", |
|
|
|
" horse 128 2 0.806 1 0.995 0.647\n", |
|
|
|
" elephant 128 17 0.955 0.882 0.932 0.691\n", |
|
|
|
" bear 128 1 0.681 1 0.995 0.895\n", |
|
|
|
" zebra 128 4 0.87 1 0.995 0.947\n", |
|
|
|
" giraffe 128 9 0.881 1 0.995 0.734\n", |
|
|
|
" backpack 128 6 0.926 0.667 0.808 0.359\n", |
|
|
|
" umbrella 128 18 0.811 0.667 0.864 0.507\n", |
|
|
|
" handbag 128 19 0.768 0.211 0.352 0.183\n", |
|
|
|
" tie 128 7 0.778 0.714 0.822 0.495\n", |
|
|
|
" suitcase 128 4 0.805 1 0.995 0.534\n", |
|
|
|
" frisbee 128 5 0.697 0.8 0.8 0.74\n", |
|
|
|
" skis 128 1 0.734 1 0.995 0.4\n", |
|
|
|
" snowboard 128 7 0.859 0.714 0.852 0.563\n", |
|
|
|
" sports ball 128 6 0.612 0.667 0.603 0.328\n", |
|
|
|
" kite 128 10 0.855 0.592 0.624 0.249\n", |
|
|
|
" baseball bat 128 4 0.403 0.25 0.401 0.171\n", |
|
|
|
" baseball glove 128 7 0.7 0.429 0.467 0.323\n", |
|
|
|
" skateboard 128 5 1 0.57 0.862 0.512\n", |
|
|
|
" tennis racket 128 7 0.753 0.429 0.635 0.327\n", |
|
|
|
" bottle 128 18 0.59 0.4 0.578 0.293\n", |
|
|
|
" wine glass 128 16 0.654 1 0.925 0.503\n", |
|
|
|
" cup 128 36 0.77 0.806 0.845 0.521\n", |
|
|
|
" fork 128 6 0.988 0.333 0.44 0.312\n", |
|
|
|
" knife 128 16 0.755 0.579 0.684 0.404\n", |
|
|
|
" spoon 128 22 0.827 0.436 0.629 0.354\n", |
|
|
|
" bowl 128 28 0.784 0.648 0.753 0.528\n", |
|
|
|
" banana 128 1 0.802 1 0.995 0.108\n", |
|
|
|
" sandwich 128 2 1 0 0.606 0.545\n", |
|
|
|
" orange 128 4 0.959 1 0.995 0.691\n", |
|
|
|
" broccoli 128 11 0.483 0.455 0.466 0.337\n", |
|
|
|
" carrot 128 24 0.85 0.542 0.73 0.506\n", |
|
|
|
" hot dog 128 2 0.587 1 0.828 0.712\n", |
|
|
|
" pizza 128 5 0.882 0.8 0.962 0.687\n", |
|
|
|
" donut 128 14 0.702 1 0.981 0.846\n", |
|
|
|
" cake 128 4 0.875 1 0.995 0.858\n", |
|
|
|
" chair 128 35 0.639 0.608 0.624 0.303\n", |
|
|
|
" couch 128 6 1 0.592 0.857 0.539\n", |
|
|
|
" potted plant 128 14 0.76 0.786 0.835 0.471\n", |
|
|
|
" bed 128 3 1 0 0.806 0.557\n", |
|
|
|
" dining table 128 13 0.824 0.362 0.602 0.403\n", |
|
|
|
" toilet 128 2 0.978 1 0.995 0.846\n", |
|
|
|
" tv 128 2 0.702 1 0.995 0.796\n", |
|
|
|
" orange 128 4 0.921 1 0.995 0.691\n", |
|
|
|
" broccoli 128 11 0.379 0.455 0.468 0.338\n", |
|
|
|
" carrot 128 24 0.777 0.542 0.73 0.503\n", |
|
|
|
" hot dog 128 2 0.562 1 0.828 0.712\n", |
|
|
|
" pizza 128 5 0.802 0.814 0.962 0.694\n", |
|
|
|
" donut 128 14 0.694 1 0.981 0.848\n", |
|
|
|
" cake 128 4 0.864 1 0.995 0.858\n", |
|
|
|
" chair 128 35 0.636 0.648 0.628 0.319\n", |
|
|
|
" couch 128 6 1 0.606 0.857 0.555\n", |
|
|
|
" potted plant 128 14 0.739 0.786 0.837 0.476\n", |
|
|
|
" bed 128 3 1 0 0.806 0.568\n", |
|
|
|
" dining table 128 13 0.862 0.483 0.602 0.405\n", |
|
|
|
" toilet 128 2 0.941 1 0.995 0.846\n", |
|
|
|
" tv 128 2 0.677 1 0.995 0.796\n", |
|
|
|
" laptop 128 3 1 0 0.83 0.532\n", |
|
|
|
" mouse 128 2 1 0 0.0931 0.0466\n", |
|
|
|
" remote 128 8 1 0.6 0.659 0.534\n", |
|
|
|
" cell phone 128 8 0.712 0.25 0.439 0.204\n", |
|
|
|
" microwave 128 3 0.811 1 0.995 0.734\n", |
|
|
|
" oven 128 5 0.46 0.4 0.44 0.29\n", |
|
|
|
" sink 128 6 0.359 0.167 0.302 0.211\n", |
|
|
|
" refrigerator 128 5 0.657 0.8 0.804 0.532\n", |
|
|
|
" book 128 29 0.624 0.207 0.298 0.165\n", |
|
|
|
" clock 128 9 0.798 0.889 0.888 0.692\n", |
|
|
|
" vase 128 2 0.495 1 0.995 0.92\n", |
|
|
|
" remote 128 8 1 0.612 0.659 0.534\n", |
|
|
|
" cell phone 128 8 0.645 0.25 0.437 0.227\n", |
|
|
|
" microwave 128 3 0.797 1 0.995 0.734\n", |
|
|
|
" oven 128 5 0.435 0.4 0.44 0.29\n", |
|
|
|
" sink 128 6 0.345 0.167 0.301 0.211\n", |
|
|
|
" refrigerator 128 5 0.645 0.8 0.804 0.545\n", |
|
|
|
" book 128 29 0.603 0.207 0.301 0.171\n", |
|
|
|
" clock 128 9 0.785 0.889 0.888 0.734\n", |
|
|
|
" vase 128 2 0.477 1 0.995 0.92\n", |
|
|
|
" scissors 128 1 1 0 0.995 0.199\n", |
|
|
|
" teddy bear 128 21 0.871 0.646 0.826 0.527\n", |
|
|
|
" toothbrush 128 5 0.828 1 0.962 0.647\n", |
|
|
|
" teddy bear 128 21 0.862 0.667 0.823 0.549\n", |
|
|
|
" toothbrush 128 5 0.809 1 0.995 0.65\n", |
|
|
|
"Results saved to \u001b[1mruns/train/exp\u001b[0m\n" |
|
|
|
] |
|
|
|
} |