|
|
@@ -58,14 +58,6 @@ def train(hyp): |
|
|
|
with open(Path(log_dir) / 'opt.yaml', 'w') as f: |
|
|
|
yaml.dump(vars(opt), f, sort_keys=False) |
|
|
|
|
|
|
|
# Log hyperparameters in tensorboard |
|
|
|
if tb_writer: |
|
|
|
tb_hparams_dict = hyp |
|
|
|
tb_hparams_dict.update(vars(opt)) |
|
|
|
tb_hparams_dict['img_size_train'], tb_hparams_dict['img_size_test'] = tb_hparams_dict['img_size'] |
|
|
|
del tb_hparams_dict['img_size'] |
|
|
|
tb_writer.add_hparams(tb_hparams_dict, {}) |
|
|
|
|
|
|
|
epochs = opt.epochs # 300 |
|
|
|
batch_size = opt.batch_size # 64 |
|
|
|
weights = opt.weights # initial training weights |
|
|
@@ -194,6 +186,7 @@ def train(hyp): |
|
|
|
# model._initialize_biases(cf.to(device)) |
|
|
|
plot_labels(labels, save_dir=log_dir) |
|
|
|
if tb_writer: |
|
|
|
tb_writer.add_hparams(hyp, {}) |
|
|
|
tb_writer.add_histogram('classes', c, 0) |
|
|
|
|
|
|
|
# Check anchors |