|
|
@@ -101,11 +101,13 @@ def train(hyp): |
|
|
|
optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) |
|
|
|
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay |
|
|
|
optimizer.add_param_group({'params': pg2}) # add pg2 (biases) |
|
|
|
print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0))) |
|
|
|
del pg0, pg1, pg2 |
|
|
|
|
|
|
|
# Scheduler https://arxiv.org/pdf/1812.01187.pdf |
|
|
|
lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.9 + 0.1 # cosine |
|
|
|
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) |
|
|
|
print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0))) |
|
|
|
del pg0, pg1, pg2 |
|
|
|
# plot_lr_scheduler(optimizer, scheduler, epochs) |
|
|
|
|
|
|
|
# Load Model |
|
|
|
google_utils.attempt_download(weights) |
|
|
@@ -147,12 +149,7 @@ def train(hyp): |
|
|
|
if mixed_precision: |
|
|
|
model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0) |
|
|
|
|
|
|
|
|
|
|
|
scheduler.last_epoch = start_epoch - 1 # do not move |
|
|
|
# https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822 |
|
|
|
# plot_lr_scheduler(optimizer, scheduler, epochs) |
|
|
|
|
|
|
|
# Initialize distributed training |
|
|
|
# Distributed training |
|
|
|
if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available(): |
|
|
|
dist.init_process_group(backend='nccl', # distributed backend |
|
|
|
init_method='tcp://127.0.0.1:9999', # init method |
|
|
@@ -198,9 +195,10 @@ def train(hyp): |
|
|
|
# Start training |
|
|
|
t0 = time.time() |
|
|
|
nb = len(dataloader) # number of batches |
|
|
|
n_burn = max(3 * nb, 1e3) # burn-in iterations, max(3 epochs, 1k iterations) |
|
|
|
nw = max(3 * nb, 1e3) # number of warmup iterations, max(3 epochs, 1k iterations) |
|
|
|
maps = np.zeros(nc) # mAP per class |
|
|
|
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification' |
|
|
|
scheduler.last_epoch = start_epoch - 1 # do not move |
|
|
|
print('Image sizes %g train, %g test' % (imgsz, imgsz_test)) |
|
|
|
print('Using %g dataloader workers' % dataloader.num_workers) |
|
|
|
print('Starting training for %g epochs...' % epochs) |
|
|
@@ -225,9 +223,9 @@ def train(hyp): |
|
|
|
ni = i + nb * epoch # number integrated batches (since train start) |
|
|
|
imgs = imgs.to(device).float() / 255.0 # uint8 to float32, 0 - 255 to 0.0 - 1.0 |
|
|
|
|
|
|
|
# Burn-in |
|
|
|
if ni <= n_burn: |
|
|
|
xi = [0, n_burn] # x interp |
|
|
|
# Warmup |
|
|
|
if ni <= nw: |
|
|
|
xi = [0, nw] # x interp |
|
|
|
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou) |
|
|
|
accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round()) |
|
|
|
for j, x in enumerate(optimizer.param_groups): |