Procházet zdrojové kódy

Scope imports for torch.hub.list() improvement (#3144)

modifyDataloader
Glenn Jocher GitHub před 3 roky
rodič
revize
1935266951
V databázi nebyl nalezen žádný známý klíč pro tento podpis ID GPG klíče: 4AEE18F83AFDEB23
1 změnil soubory, kde provedl 15 přidání a 14 odebrání
  1. +15
    -14
      hubconf.py

+ 15
- 14
hubconf.py Zobrazit soubor

@@ -9,16 +9,13 @@ from pathlib import Path

import torch

from models.yolo import Model, attempt_load
from utils.general import check_requirements, set_logging
from utils.google_utils import attempt_download
from utils.torch_utils import select_device

dependencies = ['torch', 'yaml']
check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('tensorboard', 'pycocotools', 'thop'))


def create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
"""Creates a specified YOLOv5 model

Arguments:
@@ -32,6 +29,10 @@ def create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbos
Returns:
YOLOv5 pytorch model
"""
from models.yolo import Model, attempt_load
from utils.google_utils import attempt_download
from utils.torch_utils import select_device

set_logging(verbose=verbose)
fname = Path(name).with_suffix('.pt') # checkpoint filename
try:
@@ -62,51 +63,51 @@ def create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbos

def custom(path='path/to/model.pt', autoshape=True, verbose=True):
# YOLOv5 custom or local model
return create(path, autoshape=autoshape, verbose=verbose)
return _create(path, autoshape=autoshape, verbose=verbose)


def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
# YOLOv5-small model https://github.com/ultralytics/yolov5
return create('yolov5s', pretrained, channels, classes, autoshape, verbose)
return _create('yolov5s', pretrained, channels, classes, autoshape, verbose)


def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
# YOLOv5-medium model https://github.com/ultralytics/yolov5
return create('yolov5m', pretrained, channels, classes, autoshape, verbose)
return _create('yolov5m', pretrained, channels, classes, autoshape, verbose)


def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
# YOLOv5-large model https://github.com/ultralytics/yolov5
return create('yolov5l', pretrained, channels, classes, autoshape, verbose)
return _create('yolov5l', pretrained, channels, classes, autoshape, verbose)


def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
# YOLOv5-xlarge model https://github.com/ultralytics/yolov5
return create('yolov5x', pretrained, channels, classes, autoshape, verbose)
return _create('yolov5x', pretrained, channels, classes, autoshape, verbose)


def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
# YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
return create('yolov5s6', pretrained, channels, classes, autoshape, verbose)
return _create('yolov5s6', pretrained, channels, classes, autoshape, verbose)


def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
# YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
return create('yolov5m6', pretrained, channels, classes, autoshape, verbose)
return _create('yolov5m6', pretrained, channels, classes, autoshape, verbose)


def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
# YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
return create('yolov5l6', pretrained, channels, classes, autoshape, verbose)
return _create('yolov5l6', pretrained, channels, classes, autoshape, verbose)


def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
# YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
return create('yolov5x6', pretrained, channels, classes, autoshape, verbose)
return _create('yolov5x6', pretrained, channels, classes, autoshape, verbose)


if __name__ == '__main__':
model = create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
model = _create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
# model = custom(path='path/to/model.pt') # custom

# Verify inference

Načítá se…
Zrušit
Uložit