* Adding --output and --save-conf options to test.py * Update help fields * Update test.py * Make arguments and comments uniform with test.py * Remove previous and print save_dir on finish Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>5.0
@@ -19,15 +19,15 @@ from utils.torch_utils import select_device, load_classifier, time_synchronized | |||
def detect(save_img=False): | |||
out, source, weights, view_img, save_txt, imgsz = \ | |||
opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size | |||
opt.save_dir, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size | |||
webcam = source.isnumeric() or source.startswith(('rtsp://', 'rtmp://', 'http://')) or source.endswith('.txt') | |||
# Initialize | |||
set_logging() | |||
device = select_device(opt.device) | |||
if os.path.exists(out): | |||
shutil.rmtree(out) # delete output folder | |||
os.makedirs(out) # make new output folder | |||
if os.path.exists(out): # output dir | |||
shutil.rmtree(out) # delete dir | |||
os.makedirs(out) # make new dir | |||
half = device.type != 'cpu' # half precision only supported on CUDA | |||
# Load model | |||
@@ -148,14 +148,14 @@ if __name__ == '__main__': | |||
parser = argparse.ArgumentParser() | |||
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)') | |||
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam | |||
parser.add_argument('--output', type=str, default='inference/output', help='output folder') # output folder | |||
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') | |||
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold') | |||
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS') | |||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |||
parser.add_argument('--view-img', action='store_true', help='display results') | |||
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') | |||
parser.add_argument('--save-conf', action='store_true', help='output confidences in --save-txt labels') | |||
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') | |||
parser.add_argument('--save-dir', type=str, default='inference/output', help='directory to save results') | |||
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3') | |||
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') | |||
parser.add_argument('--augment', action='store_true', help='augmented inference') |
@@ -32,6 +32,7 @@ def test(data, | |||
dataloader=None, | |||
save_dir=Path(''), # for saving images | |||
save_txt=False, # for auto-labelling | |||
save_conf=False, | |||
plots=True): | |||
# Initialize/load model and set device | |||
training = model is not None | |||
@@ -42,15 +43,17 @@ def test(data, | |||
set_logging() | |||
device = select_device(opt.device, batch_size=batch_size) | |||
save_txt = opt.save_txt # save *.txt labels | |||
if save_txt: | |||
out = Path('inference/output') | |||
if os.path.exists(out): | |||
shutil.rmtree(out) # delete output folder | |||
os.makedirs(out) # make new output folder | |||
# Remove previous | |||
for f in glob.glob(str(save_dir / 'test_batch*.jpg')): | |||
os.remove(f) | |||
if os.path.exists(save_dir): | |||
shutil.rmtree(save_dir) # delete dir | |||
os.makedirs(save_dir) # make new dir | |||
if save_txt: | |||
out = save_dir / 'autolabels' | |||
if os.path.exists(out): | |||
shutil.rmtree(out) # delete dir | |||
os.makedirs(out) # make new dir | |||
# Load model | |||
model = attempt_load(weights, map_location=device) # load FP32 model | |||
@@ -132,8 +135,9 @@ def test(data, | |||
x[:, :4] = scale_coords(img[si].shape[1:], x[:, :4], shapes[si][0], shapes[si][1]) # to original | |||
for *xyxy, conf, cls in x: | |||
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh | |||
line = (cls, conf, *xywh) if save_conf else (cls, *xywh) # label format | |||
with open(str(out / Path(paths[si]).stem) + '.txt', 'a') as f: | |||
f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format | |||
f.write(('%g ' * len(line) + '\n') % line) | |||
# Clip boxes to image bounds | |||
clip_coords(pred, (height, width)) | |||
@@ -263,6 +267,8 @@ if __name__ == '__main__': | |||
parser.add_argument('--augment', action='store_true', help='augmented inference') | |||
parser.add_argument('--verbose', action='store_true', help='report mAP by class') | |||
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') | |||
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') | |||
parser.add_argument('--save-dir', type=str, default='runs/test', help='directory to save results') | |||
opt = parser.parse_args() | |||
opt.save_json |= opt.data.endswith('coco.yaml') | |||
opt.data = check_file(opt.data) # check file | |||
@@ -278,7 +284,13 @@ if __name__ == '__main__': | |||
opt.save_json, | |||
opt.single_cls, | |||
opt.augment, | |||
opt.verbose) | |||
opt.verbose, | |||
save_dir=Path(opt.save_dir), | |||
save_txt=opt.save_txt, | |||
save_conf=opt.save_conf, | |||
) | |||
print('Results saved to %s' % opt.save_dir) | |||
elif opt.task == 'study': # run over a range of settings and save/plot | |||
for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']: |