* Create flatten_recursive() helper function * cleanup * print torch version5.0
@@ -1,11 +1,10 @@ | |||
import argparse | |||
import logging | |||
import math | |||
import sys | |||
from copy import deepcopy | |||
from pathlib import Path | |||
import math | |||
sys.path.append('./') # to run '$ python *.py' files in subdirectories | |||
logger = logging.getLogger(__name__) | |||
@@ -74,7 +73,7 @@ class Model(nn.Module): | |||
# Define model | |||
if nc and nc != self.yaml['nc']: | |||
print('Overriding model.yaml nc=%g with nc=%g' % (self.yaml['nc'], nc)) | |||
logger.info('Overriding model.yaml nc=%g with nc=%g' % (self.yaml['nc'], nc)) | |||
self.yaml['nc'] = nc # override yaml value | |||
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist, ch_out | |||
# print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))]) | |||
@@ -93,7 +92,7 @@ class Model(nn.Module): | |||
# Init weights, biases | |||
initialize_weights(self) | |||
self.info() | |||
print('') | |||
logger.info('') | |||
def forward(self, x, augment=False, profile=False): | |||
if augment: |
@@ -262,7 +262,8 @@ def test(data, | |||
print('ERROR: pycocotools unable to run: %s' % e) | |||
# Return results | |||
print('Results saved to %s' % save_dir) | |||
if not training: | |||
print('Results saved to %s' % save_dir) | |||
model.float() # for training | |||
maps = np.zeros(nc) + map | |||
for i, c in enumerate(ap_class): |
@@ -946,3 +946,11 @@ def create_folder(path='./new'): | |||
if os.path.exists(path): | |||
shutil.rmtree(path) # delete output folder | |||
os.makedirs(path) # make new output folder | |||
def flatten_recursive(path='../coco128'): | |||
# Flatten a recursive directory by bringing all files to top level | |||
new_path = Path(path + '_flat') | |||
create_folder(new_path) | |||
for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)): | |||
shutil.copyfile(file, new_path / Path(file).name) |
@@ -1,9 +1,9 @@ | |||
import logging | |||
import math | |||
import os | |||
import time | |||
from copy import deepcopy | |||
import math | |||
import torch | |||
import torch.backends.cudnn as cudnn | |||
import torch.nn as nn | |||
@@ -39,14 +39,13 @@ def select_device(device='', batch_size=None): | |||
if ng > 1 and batch_size: # check that batch_size is compatible with device_count | |||
assert batch_size % ng == 0, 'batch-size %g not multiple of GPU count %g' % (batch_size, ng) | |||
x = [torch.cuda.get_device_properties(i) for i in range(ng)] | |||
s = 'Using CUDA ' | |||
s = f'Using torch {torch.__version__} ' | |||
for i in range(0, ng): | |||
if i == 1: | |||
s = ' ' * len(s) | |||
logger.info("%sdevice%g _CudaDeviceProperties(name='%s', total_memory=%dMB)" % | |||
(s, i, x[i].name, x[i].total_memory / c)) | |||
logger.info("%sCUDA:%g (%s, %dMB)" % (s, i, x[i].name, x[i].total_memory / c)) | |||
else: | |||
logger.info('Using CPU') | |||
logger.info(f'Using torch {torch.__version__} CPU') | |||
logger.info('') # skip a line | |||
return torch.device('cuda:0' if cuda else 'cpu') | |||
@@ -143,7 +142,7 @@ def model_info(model, verbose=False): | |||
from thop import profile | |||
flops = profile(deepcopy(model), inputs=(torch.zeros(1, 3, 64, 64),), verbose=False)[0] / 1E9 * 2 | |||
fs = ', %.1f GFLOPS' % (flops * 100) # 640x640 FLOPS | |||
except: | |||
except ImportError: | |||
fs = '' | |||
logger.info( |