|
|
@@ -74,7 +74,7 @@ |
|
|
|
"clear_output()\n", |
|
|
|
"print('Setup complete. Using torch %s %s' % (torch.__version__, torch.cuda.get_device_properties(0) if torch.cuda.is_available() else 'CPU'))" |
|
|
|
], |
|
|
|
"execution_count": 1, |
|
|
|
"execution_count": null, |
|
|
|
"outputs": [ |
|
|
|
{ |
|
|
|
"output_type": "stream", |
|
|
@@ -212,7 +212,7 @@ |
|
|
|
"gdrive_download('1Y6Kou6kEB0ZEMCCpJSKStCor4KAReE43','coco2017val.zip') # val2017 dataset\n", |
|
|
|
"!mv ./coco ../ # move folder alongside /yolov5" |
|
|
|
], |
|
|
|
"execution_count": 10, |
|
|
|
"execution_count": null, |
|
|
|
"outputs": [ |
|
|
|
{ |
|
|
|
"output_type": "stream", |
|
|
@@ -238,7 +238,7 @@ |
|
|
|
"# Run YOLOv5x on COCO val2017\n", |
|
|
|
"!python test.py --weights yolov5x.pt --data coco.yaml --img 672" |
|
|
|
], |
|
|
|
"execution_count": 15, |
|
|
|
"execution_count": null, |
|
|
|
"outputs": [ |
|
|
|
{ |
|
|
|
"output_type": "stream", |
|
|
@@ -352,7 +352,7 @@ |
|
|
|
"gdrive_download('1n_oKgR81BJtqk75b00eAjdv03qVCQn2f','coco128.zip') # coco128 dataset\n", |
|
|
|
"!mv ./coco128 ../ # move folder alongside /yolov5" |
|
|
|
], |
|
|
|
"execution_count": 16, |
|
|
|
"execution_count": null, |
|
|
|
"outputs": [ |
|
|
|
{ |
|
|
|
"output_type": "stream", |
|
|
@@ -405,7 +405,7 @@ |
|
|
|
"# Train YOLOv5s on coco128 for 3 epochs\n", |
|
|
|
"!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --cfg yolov5s.yaml --weights yolov5s.pt --nosave --cache" |
|
|
|
], |
|
|
|
"execution_count": 24, |
|
|
|
"execution_count": null, |
|
|
|
"outputs": [ |
|
|
|
{ |
|
|
|
"output_type": "stream", |
|
|
@@ -622,7 +622,7 @@ |
|
|
|
"colab_type": "text" |
|
|
|
}, |
|
|
|
"source": [ |
|
|
|
"Training losses and performance metrics are saved to Tensorboard and also to a `runs/exp0/results.txt` logfile. `results.txt` is plotted as `results.png` after training completes. Partially completed `results.txt` files can be plotted with `from utils.utils import plot_results; plot_results()`. Here we show YOLOv5s trained on coco128 to 300 epochs, starting from scratch (orange), and from pretrained `yolov5s.pt` (blue)." |
|
|
|
"Training losses and performance metrics are saved to Tensorboard and also to a `runs/exp0/results.txt` logfile. `results.txt` is plotted as `results.png` after training completes. Partially completed `results.txt` files can be plotted with `from utils.utils import plot_results; plot_results()`. Here we show YOLOv5s trained on coco128 to 300 epochs, starting from scratch (blue), and from pretrained `yolov5s.pt` (orange)." |
|
|
|
] |
|
|
|
}, |
|
|
|
{ |
|
|
@@ -639,7 +639,7 @@ |
|
|
|
"source": [ |
|
|
|
"from utils.utils import plot_results; plot_results() # plot results.txt files as results.png" |
|
|
|
], |
|
|
|
"execution_count": 29, |
|
|
|
"execution_count": null, |
|
|
|
"outputs": [ |
|
|
|
{ |
|
|
|
"output_type": "execute_result", |
|
|
@@ -701,7 +701,7 @@ |
|
|
|
"!rm -rf yolov5 && git clone https://github.com/ultralytics/yolov5\n", |
|
|
|
"%cd yolov5" |
|
|
|
], |
|
|
|
"execution_count": 9, |
|
|
|
"execution_count": null, |
|
|
|
"outputs": [] |
|
|
|
}, |
|
|
|
{ |