|
|
@@ -44,7 +44,7 @@ hyp = {'optimizer': 'SGD', # ['adam', 'SGD', None] if none, default is SGD |
|
|
|
|
|
|
|
def train(hyp): |
|
|
|
print(f'Hyperparameters {hyp}') |
|
|
|
log_dir = tb_writer.log_dir # run directory |
|
|
|
log_dir = tb_writer.log_dir if tb_writer else 'runs/evolution' # run directory |
|
|
|
wdir = str(Path(log_dir) / 'weights') + os.sep # weights directory |
|
|
|
|
|
|
|
os.makedirs(wdir, exist_ok=True) |
|
|
@@ -387,7 +387,10 @@ if __name__ == '__main__': |
|
|
|
opt.weights = last if opt.resume and not opt.weights else opt.weights |
|
|
|
opt.cfg = check_file(opt.cfg) # check file |
|
|
|
opt.data = check_file(opt.data) # check file |
|
|
|
opt.hyp = check_file(opt.hyp) if opt.hyp else '' # check file |
|
|
|
if opt.hyp: # update hyps |
|
|
|
opt.hyp = check_file(opt.hyp) # check file |
|
|
|
with open(opt.hyp) as f: |
|
|
|
hyp.update(yaml.load(f, Loader=yaml.FullLoader)) # update hyps |
|
|
|
print(opt) |
|
|
|
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test) |
|
|
|
device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size) |
|
|
@@ -396,12 +399,8 @@ if __name__ == '__main__': |
|
|
|
|
|
|
|
# Train |
|
|
|
if not opt.evolve: |
|
|
|
print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/') |
|
|
|
tb_writer = SummaryWriter(log_dir=increment_dir('runs/exp', opt.name)) |
|
|
|
if opt.hyp: # update hyps |
|
|
|
with open(opt.hyp) as f: |
|
|
|
hyp.update(yaml.load(f, Loader=yaml.FullLoader)) |
|
|
|
|
|
|
|
print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/') |
|
|
|
train(hyp) |
|
|
|
|
|
|
|
# Evolve hyperparameters (optional) |