* Use pathlib instead of low-level module * Use pathlib instead of low-level module * Update detect.py * Update test.py * reformat Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>5.0
@@ -1,5 +1,4 @@ | |||
import argparse | |||
import os | |||
import time | |||
from pathlib import Path | |||
@@ -18,13 +17,14 @@ from utils.torch_utils import select_device, load_classifier, time_synchronized | |||
def detect(save_img=False): | |||
save_dir, source, weights, view_img, save_txt, imgsz = \ | |||
Path(opt.save_dir), opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size | |||
webcam = source.isnumeric() or source.startswith(('rtsp://', 'rtmp://', 'http://')) or source.endswith('.txt') | |||
webcam = source.isnumeric() or source.endswith('.txt') or \ | |||
source.lower().startswith(('rtsp://', 'rtmp://', 'http://')) | |||
# Directories | |||
if save_dir == Path('runs/detect'): # if default | |||
os.makedirs('runs/detect', exist_ok=True) # make base | |||
save_dir.mkdir(parents=True, exist_ok=True) # make base | |||
save_dir = Path(increment_dir(save_dir / 'exp', opt.name)) # increment run | |||
os.makedirs(save_dir / 'labels' if save_txt else save_dir, exist_ok=True) # make new dir | |||
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make new dir | |||
# Initialize | |||
set_logging() |
@@ -6,7 +6,7 @@ Usage: | |||
""" | |||
dependencies = ['torch', 'yaml'] | |||
import os | |||
from pathlib import Path | |||
import torch | |||
@@ -29,7 +29,7 @@ def create(name, pretrained, channels, classes): | |||
Returns: | |||
pytorch model | |||
""" | |||
config = os.path.join(os.path.dirname(__file__), 'models', f'{name}.yaml') # model.yaml path | |||
config = Path(__file__).parent / 'models' / f'{name}.yaml' # model.yaml path | |||
try: | |||
model = Model(config, channels, classes) | |||
if pretrained: |
@@ -47,9 +47,9 @@ def test(data, | |||
# Directories | |||
if save_dir == Path('runs/test'): # if default | |||
os.makedirs('runs/test', exist_ok=True) # make base | |||
save_dir.mkdir(parents=True, exist_ok=True) # make base | |||
save_dir = Path(increment_dir(save_dir / 'exp', opt.name)) # increment run | |||
os.makedirs(save_dir / 'labels' if save_txt else save_dir, exist_ok=True) # make new dir | |||
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make new dir | |||
# Load model | |||
model = attempt_load(weights, map_location=device) # load FP32 model |
@@ -38,10 +38,10 @@ def train(hyp, opt, device, tb_writer=None, wandb=None): | |||
logger.info(f'Hyperparameters {hyp}') | |||
log_dir = Path(tb_writer.log_dir) if tb_writer else Path(opt.logdir) / 'evolve' # logging directory | |||
wdir = log_dir / 'weights' # weights directory | |||
os.makedirs(wdir, exist_ok=True) | |||
wdir.mkdir(parents=True, exist_ok=True) | |||
last = wdir / 'last.pt' | |||
best = wdir / 'best.pt' | |||
results_file = str(log_dir / 'results.txt') | |||
results_file = log_dir / 'results.txt' | |||
epochs, batch_size, total_batch_size, weights, rank = \ | |||
opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank | |||
@@ -121,7 +121,7 @@ def train(hyp, opt, device, tb_writer=None, wandb=None): | |||
# Logging | |||
if wandb and wandb.run is None: | |||
id = ckpt.get('wandb_id') if 'ckpt' in locals() else None | |||
wandb_run = wandb.init(config=opt, resume="allow", project="YOLOv5", name=os.path.basename(log_dir), id=id) | |||
wandb_run = wandb.init(config=opt, resume="allow", project="YOLOv5", name=log_dir.stem, id=id) | |||
# Resume | |||
start_epoch, best_fitness = 0, 0.0 | |||
@@ -371,7 +371,7 @@ def train(hyp, opt, device, tb_writer=None, wandb=None): | |||
n = opt.name if opt.name.isnumeric() else '' | |||
fresults, flast, fbest = log_dir / f'results{n}.txt', wdir / f'last{n}.pt', wdir / f'best{n}.pt' | |||
for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', results_file], [flast, fbest, fresults]): | |||
if os.path.exists(f1): | |||
if f1.exists(): | |||
os.rename(f1, f2) # rename | |||
if str(f2).endswith('.pt'): # is *.pt | |||
strip_optimizer(f2) # strip optimizer | |||
@@ -520,7 +520,7 @@ if __name__ == '__main__': | |||
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists | |||
for _ in range(300): # generations to evolve | |||
if os.path.exists('evolve.txt'): # if evolve.txt exists: select best hyps and mutate | |||
if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate | |||
# Select parent(s) | |||
parent = 'single' # parent selection method: 'single' or 'weighted' | |||
x = np.loadtxt('evolve.txt', ndmin=2) |