Browse Source

Use pathlib instead of low-level module (#1329)

* Use pathlib instead of low-level module

* Use pathlib instead of low-level module

* Update detect.py

* Update test.py

* reformat

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
5.0
Khiem Doan GitHub 4 years ago
parent
commit
1c8464e199
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 13 additions and 13 deletions
  1. +4
    -4
      detect.py
  2. +2
    -2
      hubconf.py
  3. +2
    -2
      test.py
  4. +5
    -5
      train.py

+ 4
- 4
detect.py View File

@@ -1,5 +1,4 @@
import argparse
import os
import time
from pathlib import Path

@@ -18,13 +17,14 @@ from utils.torch_utils import select_device, load_classifier, time_synchronized
def detect(save_img=False):
save_dir, source, weights, view_img, save_txt, imgsz = \
Path(opt.save_dir), opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
webcam = source.isnumeric() or source.startswith(('rtsp://', 'rtmp://', 'http://')) or source.endswith('.txt')
webcam = source.isnumeric() or source.endswith('.txt') or \
source.lower().startswith(('rtsp://', 'rtmp://', 'http://'))

# Directories
if save_dir == Path('runs/detect'): # if default
os.makedirs('runs/detect', exist_ok=True) # make base
save_dir.mkdir(parents=True, exist_ok=True) # make base
save_dir = Path(increment_dir(save_dir / 'exp', opt.name)) # increment run
os.makedirs(save_dir / 'labels' if save_txt else save_dir, exist_ok=True) # make new dir
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make new dir

# Initialize
set_logging()

+ 2
- 2
hubconf.py View File

@@ -6,7 +6,7 @@ Usage:
"""

dependencies = ['torch', 'yaml']
import os
from pathlib import Path

import torch

@@ -29,7 +29,7 @@ def create(name, pretrained, channels, classes):
Returns:
pytorch model
"""
config = os.path.join(os.path.dirname(__file__), 'models', f'{name}.yaml') # model.yaml path
config = Path(__file__).parent / 'models' / f'{name}.yaml' # model.yaml path
try:
model = Model(config, channels, classes)
if pretrained:

+ 2
- 2
test.py View File

@@ -47,9 +47,9 @@ def test(data,

# Directories
if save_dir == Path('runs/test'): # if default
os.makedirs('runs/test', exist_ok=True) # make base
save_dir.mkdir(parents=True, exist_ok=True) # make base
save_dir = Path(increment_dir(save_dir / 'exp', opt.name)) # increment run
os.makedirs(save_dir / 'labels' if save_txt else save_dir, exist_ok=True) # make new dir
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make new dir

# Load model
model = attempt_load(weights, map_location=device) # load FP32 model

+ 5
- 5
train.py View File

@@ -38,10 +38,10 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
logger.info(f'Hyperparameters {hyp}')
log_dir = Path(tb_writer.log_dir) if tb_writer else Path(opt.logdir) / 'evolve' # logging directory
wdir = log_dir / 'weights' # weights directory
os.makedirs(wdir, exist_ok=True)
wdir.mkdir(parents=True, exist_ok=True)
last = wdir / 'last.pt'
best = wdir / 'best.pt'
results_file = str(log_dir / 'results.txt')
results_file = log_dir / 'results.txt'
epochs, batch_size, total_batch_size, weights, rank = \
opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

@@ -121,7 +121,7 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
# Logging
if wandb and wandb.run is None:
id = ckpt.get('wandb_id') if 'ckpt' in locals() else None
wandb_run = wandb.init(config=opt, resume="allow", project="YOLOv5", name=os.path.basename(log_dir), id=id)
wandb_run = wandb.init(config=opt, resume="allow", project="YOLOv5", name=log_dir.stem, id=id)

# Resume
start_epoch, best_fitness = 0, 0.0
@@ -371,7 +371,7 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
n = opt.name if opt.name.isnumeric() else ''
fresults, flast, fbest = log_dir / f'results{n}.txt', wdir / f'last{n}.pt', wdir / f'best{n}.pt'
for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', results_file], [flast, fbest, fresults]):
if os.path.exists(f1):
if f1.exists():
os.rename(f1, f2) # rename
if str(f2).endswith('.pt'): # is *.pt
strip_optimizer(f2) # strip optimizer
@@ -520,7 +520,7 @@ if __name__ == '__main__':
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists

for _ in range(300): # generations to evolve
if os.path.exists('evolve.txt'): # if evolve.txt exists: select best hyps and mutate
if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
# Select parent(s)
parent = 'single' # parent selection method: 'single' or 'weighted'
x = np.loadtxt('evolve.txt', ndmin=2)

Loading…
Cancel
Save