Browse Source

initial commit

5.0
Glenn Jocher 4 years ago
commit
1e84a23f38
39 changed files with 6447 additions and 0 deletions
  1. +217
    -0
      .dockerignore
  2. +41
    -0
      .github/ISSUE_TEMPLATE/--bug-report.md
  3. +27
    -0
      .github/ISSUE_TEMPLATE/--feature-request.md
  4. +23
    -0
      .github/workflows/greetings.yml
  5. +17
    -0
      .github/workflows/stale.yml
  6. +244
    -0
      .gitignore
  7. +49
    -0
      Dockerfile
  8. +674
    -0
      LICENSE
  9. +110
    -0
      README.md
  10. +33
    -0
      data/coco.yaml
  11. +26
    -0
      data/coco128.yaml
  12. +25
    -0
      data/get_coco2017.sh
  13. +182
    -0
      detect.py
  14. BIN
      inference/images/bus.jpg
  15. BIN
      inference/images/zidane.jpg
  16. +174
    -0
      models/common.py
  17. +48
    -0
      models/experimental.py
  18. +197
    -0
      models/yolo.py
  19. +55
    -0
      models/yolov3-spp.yaml
  20. +55
    -0
      models/yolov3-spp_csp.yaml
  21. +45
    -0
      models/yolov5l.yaml
  22. +46
    -0
      models/yolov5m.yaml
  23. +45
    -0
      models/yolov5s.yaml
  24. +46
    -0
      models/yolov5s_csp.yaml
  25. +46
    -0
      models/yolov5s_csp1.yaml
  26. +46
    -0
      models/yolov5s_csp2.yaml
  27. +45
    -0
      models/yolov5x.yaml
  28. +22
    -0
      requirements.txt
  29. +268
    -0
      test.py
  30. +443
    -0
      train.py
  31. +733
    -0
      tutorial.ipynb
  32. +0
    -0
      utils/__init__.py
  33. +62
    -0
      utils/activations.py
  34. +842
    -0
      utils/datasets.py
  35. +181
    -0
      utils/gcp.sh
  36. +94
    -0
      utils/google_utils.py
  37. +194
    -0
      utils/torch_utils.py
  38. +1085
    -0
      utils/utils.py
  39. +7
    -0
      weights/download_weights.sh

+ 217
- 0
.dockerignore View File

@@ -0,0 +1,217 @@
# Repo-specific DockerIgnore -------------------------------------------------------------------------------------------
# .git
.cache
.idea
runs
output
coco
storage.googleapis.com

data/samples/*
!data/samples/zidane.jpg
!data/samples/bus.jpg
**/results*.txt
*.jpg

# Neural Network weights -----------------------------------------------------------------------------------------------
**/*.weights
**/*.pt
**/*.onnx
**/*.mlmodel
**/darknet53.conv.74
**/yolov3-tiny.conv.15


# Below Copied From .gitignore -----------------------------------------------------------------------------------------
# Below Copied From .gitignore -----------------------------------------------------------------------------------------


# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class

# C extensions
*.so

# Distribution / packaging
.Python
env/
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
*.egg-info/
.installed.cfg
*.egg

# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec

# Installer logs
pip-log.txt
pip-delete-this-directory.txt

# Unit test / coverage reports
htmlcov/
.tox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/

# Translations
*.mo
*.pot

# Django stuff:
*.log
local_settings.py

# Flask stuff:
instance/
.webassets-cache

# Scrapy stuff:
.scrapy

# Sphinx documentation
docs/_build/

# PyBuilder
target/

# Jupyter Notebook
.ipynb_checkpoints

# pyenv
.python-version

# celery beat schedule file
celerybeat-schedule

# SageMath parsed files
*.sage.py

# dotenv
.env

# virtualenv
.venv
venv/
ENV/

# Spyder project settings
.spyderproject
.spyproject

# Rope project settings
.ropeproject

# mkdocs documentation
/site

# mypy
.mypy_cache/


# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------

# General
.DS_Store
.AppleDouble
.LSOverride

# Icon must end with two \r
Icon
Icon?

# Thumbnails
._*

# Files that might appear in the root of a volume
.DocumentRevisions-V100
.fseventsd
.Spotlight-V100
.TemporaryItems
.Trashes
.VolumeIcon.icns
.com.apple.timemachine.donotpresent

# Directories potentially created on remote AFP share
.AppleDB
.AppleDesktop
Network Trash Folder
Temporary Items
.apdisk


# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839

# User-specific stuff:
.idea/*
.idea/**/workspace.xml
.idea/**/tasks.xml
.idea/dictionaries
.html # Bokeh Plots
.pg # TensorFlow Frozen Graphs
.avi # videos

# Sensitive or high-churn files:
.idea/**/dataSources/
.idea/**/dataSources.ids
.idea/**/dataSources.local.xml
.idea/**/sqlDataSources.xml
.idea/**/dynamic.xml
.idea/**/uiDesigner.xml

# Gradle:
.idea/**/gradle.xml
.idea/**/libraries

# CMake
cmake-build-debug/
cmake-build-release/

# Mongo Explorer plugin:
.idea/**/mongoSettings.xml

## File-based project format:
*.iws

## Plugin-specific files:

# IntelliJ
out/

# mpeltonen/sbt-idea plugin
.idea_modules/

# JIRA plugin
atlassian-ide-plugin.xml

# Cursive Clojure plugin
.idea/replstate.xml

# Crashlytics plugin (for Android Studio and IntelliJ)
com_crashlytics_export_strings.xml
crashlytics.properties
crashlytics-build.properties
fabric.properties

+ 41
- 0
.github/ISSUE_TEMPLATE/--bug-report.md View File

@@ -0,0 +1,41 @@
---
name: "\U0001F41BBug report"
about: Create a report to help us improve
title: ''
labels: bug
assignees: ''

---

Before submitting a bug report, please ensure that you are using the latest versions of:
- Python
- PyTorch
- This repository (run `git fetch && git status -uno` to check and `git pull` to update)
**Your issue must be reproducible on a public dataset (i.e COCO) using the latest version of the repository, and you must supply code to reproduce, or we can not help you.**

If this is a custom training question we suggest you include your `train*.jpg`, `test*.jpg` and `results.png` figures.


## 🐛 Bug
A clear and concise description of what the bug is.

## To Reproduce
**REQUIRED**: Code to reproduce your issue below
```
python train.py ...
```


## Expected behavior
A clear and concise description of what you expected to happen.

## Environment
If applicable, add screenshots to help explain your problem.

- OS: [e.g. Ubuntu]
- GPU [e.g. 2080 Ti]


## Additional context
Add any other context about the problem here.

+ 27
- 0
.github/ISSUE_TEMPLATE/--feature-request.md View File

@@ -0,0 +1,27 @@
---
name: "\U0001F680Feature request"
about: Suggest an idea for this project
title: ''
labels: enhancement
assignees: ''

---

## 🚀 Feature
<!-- A clear and concise description of the feature proposal -->

## Motivation

<!-- Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too -->

## Pitch

<!-- A clear and concise description of what you want to happen. -->

## Alternatives

<!-- A clear and concise description of any alternative solutions or features you've considered, if any. -->

## Additional context

<!-- Add any other context or screenshots about the feature request here. -->

+ 23
- 0
.github/workflows/greetings.yml View File

@@ -0,0 +1,23 @@
name: Greetings

on: [pull_request, issues]

jobs:
greeting:
runs-on: ubuntu-latest
steps:
- uses: actions/first-interaction@v1
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
pr-message: 'Hello @${{ github.actor }}, thank you for submitting a PR! We will respond as soon as possible.'
issue-message: >
Hello @${{ github.actor }}, thank you for your interest in our work! Please visit our [Custom Training Tutorial](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) to get started, and see our [Google Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/tutorial.ipynb), [Docker Image](https://hub.docker.com/r/ultralytics/yolov5), and [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart) for example environments.
If this is a bug report, please provide screenshots and **minimum viable code to reproduce your issue**, otherwise we can not help you.

If this is a custom model or data training question, please note that Ultralytics does **not** provide free personal support. As a leader in vision ML and AI, we do offer professional consulting, from simple expert advice up to delivery of fully customized, end-to-end production solutions for our clients, such as:
- **Cloud-based AI** surveillance systems operating on **hundreds of HD video streams in realtime.**
- **Edge AI** integrated into custom iOS and Android apps for realtime **30 FPS video inference.**
- **Custom data training**, hyperparameter evolution, and model exportation to any destination.

To discuss your business requirements in greater detail please visit us at https://www.ultralytics.com.

+ 17
- 0
.github/workflows/stale.yml View File

@@ -0,0 +1,17 @@
name: Close stale issues
on:
schedule:
- cron: "0 0 * * *"

jobs:
stale:
runs-on: ubuntu-latest
steps:
- uses: actions/stale@v1
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
stale-issue-message: 'This issue is stale because it has been open 30 days with no activity. Remove Stale label or comment or this will be closed in 5 days.'
stale-pr-message: 'This pull request is stale because it has been open 30 days with no activity. Remove Stale label or comment or this will be closed in 5 days.'
days-before-stale: 30
days-before-close: 5
exempt-issue-label: 'tutorial'

+ 244
- 0
.gitignore View File

@@ -0,0 +1,244 @@
# Repo-specific GitIgnore ----------------------------------------------------------------------------------------------
*.jpg
*.jpeg
*.png
*.bmp
*.tif
*.tiff
*.heic
*.JPG
*.JPEG
*.PNG
*.BMP
*.TIF
*.TIFF
*.HEIC
*.mp4
*.mov
*.MOV
*.avi
*.data
*.json

*.cfg
!cfg/yolov3*.cfg

storage.googleapis.com
runs/*
data/*
!data/samples/zidane.jpg
!data/samples/bus.jpg
!data/coco.names
!data/coco_paper.names
!data/coco.data
!data/coco_*.data
!data/coco_*.txt
!data/trainvalno5k.shapes
!data/*.sh

pycocotools/*
results*.txt
gcp_test*.sh

# MATLAB GitIgnore -----------------------------------------------------------------------------------------------------
*.m~
*.mat
!targets*.mat

# Neural Network weights -----------------------------------------------------------------------------------------------
*.weights
*.pt
*.onnx
*.mlmodel
darknet53.conv.74
yolov3-tiny.conv.15

# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class

# C extensions
*.so

# Distribution / packaging
.Python
env/
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
*.egg-info/
.installed.cfg
*.egg

# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec

# Installer logs
pip-log.txt
pip-delete-this-directory.txt

# Unit test / coverage reports
htmlcov/
.tox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/

# Translations
*.mo
*.pot

# Django stuff:
*.log
local_settings.py

# Flask stuff:
instance/
.webassets-cache

# Scrapy stuff:
.scrapy

# Sphinx documentation
docs/_build/

# PyBuilder
target/

# Jupyter Notebook
.ipynb_checkpoints

# pyenv
.python-version

# celery beat schedule file
celerybeat-schedule

# SageMath parsed files
*.sage.py

# dotenv
.env

# virtualenv
.venv
venv/
ENV/

# Spyder project settings
.spyderproject
.spyproject

# Rope project settings
.ropeproject

# mkdocs documentation
/site

# mypy
.mypy_cache/


# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------

# General
.DS_Store
.AppleDouble
.LSOverride

# Icon must end with two \r
Icon
Icon?

# Thumbnails
._*

# Files that might appear in the root of a volume
.DocumentRevisions-V100
.fseventsd
.Spotlight-V100
.TemporaryItems
.Trashes
.VolumeIcon.icns
.com.apple.timemachine.donotpresent

# Directories potentially created on remote AFP share
.AppleDB
.AppleDesktop
Network Trash Folder
Temporary Items
.apdisk


# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839

# User-specific stuff:
.idea/*
.idea/**/workspace.xml
.idea/**/tasks.xml
.idea/dictionaries
.html # Bokeh Plots
.pg # TensorFlow Frozen Graphs
.avi # videos

# Sensitive or high-churn files:
.idea/**/dataSources/
.idea/**/dataSources.ids
.idea/**/dataSources.local.xml
.idea/**/sqlDataSources.xml
.idea/**/dynamic.xml
.idea/**/uiDesigner.xml

# Gradle:
.idea/**/gradle.xml
.idea/**/libraries

# CMake
cmake-build-debug/
cmake-build-release/

# Mongo Explorer plugin:
.idea/**/mongoSettings.xml

## File-based project format:
*.iws

## Plugin-specific files:

# IntelliJ
out/

# mpeltonen/sbt-idea plugin
.idea_modules/

# JIRA plugin
atlassian-ide-plugin.xml

# Cursive Clojure plugin
.idea/replstate.xml

# Crashlytics plugin (for Android Studio and IntelliJ)
com_crashlytics_export_strings.xml
crashlytics.properties
crashlytics-build.properties
fabric.properties

+ 49
- 0
Dockerfile View File

@@ -0,0 +1,49 @@
# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
FROM nvcr.io/nvidia/pytorch:20.03-py3

# Install dependencies (pip or conda)
RUN pip install -U gsutil thop
# RUN pip install -U -r requirements.txt

# Create working directory
RUN mkdir -p /usr/src/app
WORKDIR /usr/src/app

# Copy contents
COPY . /usr/src/app

# Copy weights
#RUN python3 -c "from models import *; \
#attempt_download('weights/yolov5s.pt'); \
#attempt_download('weights/yolov5m.pt'); \
#attempt_download('weights/yolov5l.pt')"


# --------------------------------------------------- Extras Below ---------------------------------------------------

# Build and Push
# t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t

# Pull and Run
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host $t bash

# Pull and Run with local directory access
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t bash

# Kill all
# sudo docker kill "$(sudo docker ps -q)"

# Kill all image-based
# sudo docker kill $(sudo docker ps -a -q --filter ancestor=ultralytics/yolov5:latest)

# Run bash for loop
# sudo docker run --gpus all --ipc=host ultralytics/yolov5:latest while true; do python3 train.py --evolve; done

# Bash in running container
# sudo docker container exec -it 97919ad657de /bin/bash

# Bash last stopped container
# python -c "from utils.utils import *; create_backbone('weights/best.pt')" && gsutil cp weights/backbone.pt gs://ult/coco/yolov5s.pt

# Clean up
# docker system prune -a --volumes

+ 674
- 0
LICENSE View File

@@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS

0. Definitions.

"This License" refers to version 3 of the GNU General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based
on the Program.

To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

1. Source Code.

The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that
same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".

c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

11. Patents.

A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".

You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

+ 110
- 0
README.md View File

@@ -0,0 +1,110 @@
<a href="https://apps.apple.com/app/id1452689527" target="_blank">
<img src="https://user-images.githubusercontent.com/26833433/82944393-f7644d80-9f4f-11ea-8b87-1a5b04f555f1.jpg" width="1000"></a>
&nbsp

This repository represents Ultralytics open-source research into future object detection methods, and incorporates our lessons learned and best practices evolved over training thousands of models on custom client datasets with our previous YOLO repository https://github.com/ultralytics/yolov3. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.

Updates:
- **May 27, 2020**: Public release of repo. yolov3-spp (this repo) is SOTA among all known yolo implementations, yolov5 family will be undergoing architecture research and development over Q2/Q3 2020 to increase performance. Updates may include CSP bottlenecks from yolov4, as well as PANet or BiFPN head features.
- **May 24, 2020**: Training yolov5s/x and yolov3-spp. yolov5m/l suffered early overfitting and also code 137 early docker terminations, cause unknown. yolov5l underperforms yolov3-spp due to earlier overfitting, cause unknown.
- **April 1, 2020**: Begin development of a 100% pytorch scaleable yolov3/4-based group of future models, in small, medium, large and extra large sizes, collectively known as yolov5. Models will be defined by new user-friendly yaml-based configuration files for ease of construction and modification. Datasets will likewise use yaml configuration files. New training platform will be simpler use, harder to break, and more robust to training a wider variety of custom dataset.


## Ultralytics Professional Support

Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to delivery of fully customized, end-to-end production solutions, including:
- **Cloud-based AI** surveillance systems operating on **hundreds of HD video streams in realtime.**
- **Edge AI** integrated into custom iOS and Android apps for realtime **30 FPS video inference.**
- **Custom data training**, hyperparameter evolution, and model exportation to any destination.

For business inquiries and professional support requests please visit us at https://www.ultralytics.com.


## Pretrained Checkpoints

| Model | AP<sup>val</sup> | AP<sup>test</sup> | AP<sub>50</sub> | Latency<sub>GPU</sub> | FPS<sub>GPU</sub> | | params | FLOPs |
|---------- |------ |------ |------ | -------- | ------| ------ |------ | :------: |
| YOLOv5-s ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | 33.1 | 33.0 | 53.3 | **3.3ms** | **303** | | 7.0B | 14.0
| YOLOv5-m ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | 41.5 | 41.5 | 61.5 | 5.5ms | 182 | | 25.2B | 50.2
| YOLOv5-l ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | 44.2 | 44.5 | 64.3 | 9.7ms | 103 | | 61.8B | 123.1
| YOLOv5-x ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | **47.1** | **47.2** | **66.7** | 15.8ms | 63 | | 123.1B | 245.7
| YOLOv3-SPP ([ckpt](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J)) | 45.5 | 45.4 | 65.2 | 8.9ms | 112 | | 63.0B | 118.0

** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
** All accuracy numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python test.py --img-size 736 --conf_thres 0.001`
** Latency<sub>GPU</sub> measures end-to-end latency per image averaged over 5000 COCO val2017 images using a V100 GPU and includes image preprocessing, inference, postprocessing and NMS. Average NMS time included in this chart is 1.6ms/image. Reproduce by `python test.py --img-size 640 --conf_thres 0.1 --batch-size 16`
** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).


## Requirements

Python 3.7 or later with all `requirements.txt` dependencies installed, including `torch >= 1.5`. To install run:
```bash
$ pip install -U -r requirements.txt
```


## Tutorials

* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)
* [Google Colab Notebook](https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb) with training, testing and testing examples
* [GCP Quickstart](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
* [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart)


## Inference

Inference can be run on most common media formats. Model [checkpoints](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) are downloaded automatically if available. Results are saved to `./inference/output`.
```bash
$ python detect.py --source file.jpg # image
file.mp4 # video
./dir # directory
0 # webcam
rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
```

To run inference on examples in the `./inference/images` folder:

```bash
$ python detect.py --source ./inference/images/ --weights yolov5s.pt --conf 0.4

Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.4, device='', fourcc='mp4v', half=False, img_size=640, iou_thres=0.5, output='inference/output', save_txt=False, source='./inference/images/', view_img=False, weights='yolov5s.pt')
Using CUDA device0 _CudaDeviceProperties(name='Tesla P100-PCIE-16GB', total_memory=16280MB)

Downloading https://drive.google.com/uc?export=download&id=1R5T6rIyy3lLwgFXNms8whc-387H0tMQO as yolov5s.pt... Done (2.6s)

image 1/2 inference/images/bus.jpg: 640x512 3 persons, 1 buss, Done. (0.009s)
image 2/2 inference/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.009s)
Results saved to /content/yolov5/inference/output
```

<img src="https://user-images.githubusercontent.com/26833433/83082816-59e54880-a039-11ea-8abe-ab90cc1ec4b0.jpeg" width="500">


## Reproduce Our Training

Run commands below. Training takes a few days for yolov5s, to a few weeks for yolov5x on a 2080Ti GPU.
```bash
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 16
```
<img src="https://user-images.githubusercontent.com/26833433/82960433-5a191180-9f6f-11ea-85cc-c49dbd1555e1.png" width="900">


## Reproduce Our Environment

To access an up-to-date working environment (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled), consider a:

- **GCP** Deep Learning VM with $300 free credit offer: See our [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
- **Google Colab Notebook** with 12 hours of free GPU time: [Google Colab Notebook](https://colab.sandbox.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb)
- **Docker Image** from https://hub.docker.com/r/ultralytics/yolov5. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart)


## Citation

[![DOI](https://zenodo.org/badge/146165888.svg)](https://zenodo.org/badge/latestdoi/146165888)


## Contact

**Issues should be raised directly in the repository.** For business inquiries or professional support requests please visit us at https://www.ultralytics.com.

+ 33
- 0
data/coco.yaml View File

@@ -0,0 +1,33 @@
# COCO 2017 dataset http://cocodataset.org
# Download command: bash yolov5/data/get_coco2017.sh
# Train command: python train.py --data ./data/coco.yaml
# Dataset should be placed next to yolov5 folder:
# /parent_folder
# /coco
# /yolov5


# train and val datasets (image directory or *.txt file with image paths)
train: ../coco/train2017.txt # 118k images
val: ../coco/val2017.txt # 5k images
test: ../coco/test-dev2017.txt # 20k images for submission to https://competitions.codalab.org/competitions/20794

# number of classes
nc: 80

# class names
names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush']

# Print classes
# with open('data/coco.yaml') as f:
# d = yaml.load(f, Loader=yaml.FullLoader) # dict
# for i, x in enumerate(d['names']):
# print(i, x)

+ 26
- 0
data/coco128.yaml View File

@@ -0,0 +1,26 @@
# COCO 2017 dataset http://cocodataset.org - first 128 training images
# Download command: python -c "from yolov5.utils.google_utils import gdrive_download; gdrive_download('1n_oKgR81BJtqk75b00eAjdv03qVCQn2f','coco128.zip')"
# Train command: python train.py --data ./data/coco128.yaml
# Dataset should be placed next to yolov5 folder:
# /parent_folder
# /coco128
# /yolov5


# train and val datasets (image directory or *.txt file with image paths)
train: ../coco128/images/train2017/
val: ../coco128/images/train2017/

# number of classes
nc: 80

# class names
names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush']

+ 25
- 0
data/get_coco2017.sh View File

@@ -0,0 +1,25 @@
#!/bin/bash
# Zip coco folder
# zip -r coco.zip coco
# tar -czvf coco.tar.gz coco

# Download labels from Google Drive, accepting presented query
filename="coco2017labels.zip"
fileid="1cXZR_ckHki6nddOmcysCuuJFM--T-Q6L"
curl -c ./cookie -s -L "https://drive.google.com/uc?export=download&id=${fileid}" > /dev/null
curl -Lb ./cookie "https://drive.google.com/uc?export=download&confirm=`awk '/download/ {print $NF}' ./cookie`&id=${fileid}" -o ${filename}
rm ./cookie

# Unzip labels
unzip -q ${filename} # for coco.zip
# tar -xzf ${filename} # for coco.tar.gz
rm ${filename}

# Download and unzip images
cd coco/images
f="train2017.zip" && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f && rm $f # 19G, 118k images
f="val2017.zip" && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f && rm $f # 1G, 5k images
# f="test2017.zip" && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f && rm $f # 7G, 41k images

# cd out
cd ../..

+ 182
- 0
detect.py View File

@@ -0,0 +1,182 @@
import argparse

from utils.datasets import *
from utils.utils import *

ONNX_EXPORT = False


def detect(save_img=False):
imgsz = (320, 192) if ONNX_EXPORT else opt.img_size # (320, 192) or (416, 256) or (608, 352) for (height, width)
out, source, weights, half, view_img, save_txt = opt.output, opt.source, opt.weights, opt.half, opt.view_img, opt.save_txt
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')

# Initialize
device = torch_utils.select_device(device='cpu' if ONNX_EXPORT else opt.device)
if os.path.exists(out):
shutil.rmtree(out) # delete output folder
os.makedirs(out) # make new output folder

# Load model
google_utils.attempt_download(weights)
model = torch.load(weights, map_location=device)['model']
# torch.save(torch.load(weights, map_location=device), weights) # update model if SourceChangeWarning

# Second-stage classifier
classify = False
if classify:
modelc = torch_utils.load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights
modelc.to(device).eval()

# Eval mode
model.to(device).eval()

# Fuse Conv2d + BatchNorm2d layers
# model.fuse()

# Export mode
if ONNX_EXPORT:
model.fuse()
img = torch.zeros((1, 3) + imgsz) # (1, 3, 320, 192)
f = opt.weights.replace(opt.weights.split('.')[-1], 'onnx') # *.onnx filename
torch.onnx.export(model, img, f, verbose=False, opset_version=11)

# Validate exported model
import onnx
model = onnx.load(f) # Load the ONNX model
onnx.checker.check_model(model) # Check that the IR is well formed
print(onnx.helper.printable_graph(model.graph)) # Print a human readable representation of the graph
return

# Half precision
half = half and device.type != 'cpu' # half precision only supported on CUDA
if half:
model.half()

# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = True
torch.backends.cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz)
else:
save_img = True
dataset = LoadImages(source, img_size=imgsz)

# Get names and colors
names = model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]

# Run inference
t0 = time.time()
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
_ = model(img.half() if half else img.float()) if device.type != 'cpu' else None # run once
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)

# Inference
t1 = torch_utils.time_synchronized()
pred = model(img, augment=opt.augment)[0]
t2 = torch_utils.time_synchronized()

# to float
if half:
pred = pred.float()

# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres,
multi_label=False, classes=opt.classes, agnostic=opt.agnostic_nms)

# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)

# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0 = path[i], '%g: ' % i, im0s[i]
else:
p, s, im0 = path, '', im0s

save_path = str(Path(out) / Path(p).name)
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] #  normalization gain whwh
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += '%g %ss, ' % (n, names[int(c)]) # add to string

# Write results
for *xyxy, conf, cls in det:
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
with open(save_path[:save_path.rfind('.')] + '.txt', 'a') as file:
file.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format

if save_img or view_img: # Add bbox to image
label = '%s %.2f' % (names[int(cls)], conf)
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)

# Print time (inference + NMS)
print('%sDone. (%.3fs)' % (s, t2 - t1))

# Stream results
if view_img:
cv2.imshow(p, im0)
if cv2.waitKey(1) == ord('q'): # q to quit
raise StopIteration

# Save results (image with detections)
if save_img:
if dataset.mode == 'images':
cv2.imwrite(save_path, im0)
else:
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer

fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
vid_writer.write(im0)

if save_txt or save_img:
print('Results saved to %s' % os.getcwd() + os.sep + out)
if platform == 'darwin': # MacOS
os.system('open ' + save_path)

print('Done. (%.3fs)' % (time.time() - t0))


if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='weights/yolov5s.pt', help='model.pt path')
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
parser.add_argument('--output', type=str, default='inference/output', help='output folder') # output folder
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')
parser.add_argument('--half', action='store_true', help='half precision FP16 inference')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
opt = parser.parse_args()
print(opt)

with torch.no_grad():
detect()

BIN
inference/images/bus.jpg View File

Before After
Width: 810  |  Height: 1080  |  Size: 476KB

BIN
inference/images/zidane.jpg View File

Before After
Width: 1280  |  Height: 720  |  Size: 165KB

+ 174
- 0
models/common.py View File

@@ -0,0 +1,174 @@
# This file contains modules common to various models


import torch.nn.functional as F

from utils.utils import *


def DWConv(c1, c2, k=1, s=1, act=True): # depthwise convolution
return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)


class Conv(nn.Module): # standard convolution
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
super(Conv, self).__init__()
self.conv = nn.Conv2d(c1, c2, k, s, k // 2, groups=g, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = nn.LeakyReLU(0.1, inplace=True) if act else nn.Identity()

def forward(self, x):
return self.act(self.bn(self.conv(x)))


class Bottleneck(nn.Module):
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
super(Bottleneck, self).__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_, c2, 3, 1, g=g)
self.add = shortcut and c1 == c2

def forward(self, x):
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))


class BottleneckLight(nn.Module):
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
super(BottleneckLight, self).__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = nn.Conv2d(c_, c2, 3, 1, 3 // 2, groups=g, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = nn.LeakyReLU(0.1, inplace=True)
self.add = shortcut and c1 == c2

def forward(self, x):
return self.act(self.bn(x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))))


class BottleneckCSP(nn.Module):
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super(BottleneckCSP, self).__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
self.cv4 = Conv(c2, c2, 1, 1)
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
self.act = nn.LeakyReLU(0.1, inplace=True)
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])

def forward(self, x):
y1 = self.cv3(self.m(self.cv1(x)))
y2 = self.cv2(x)
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))


class BottleneckCSPF(nn.Module):
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super(BottleneckCSPF, self).__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
self.cv4 = Conv(c2, c2, 1, 1)
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
self.act = nn.LeakyReLU(0.1, inplace=True)
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])

def forward(self, x):
y1 = self.cv3(self.m(self.cv1(x)))
y2 = self.cv2(x)
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))


class Narrow(nn.Module):
def __init__(self, c1, c2, shortcut=True, g=1): # ch_in, ch_out, shortcut, groups
super(Narrow, self).__init__()
c_ = c2 // 2 # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_, c2, 3, 1, g=g)
self.add = shortcut and c1 == c2

def forward(self, x):
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))


class Origami(nn.Module): # 5-side layering
def forward(self, x):
y = F.pad(x, [1, 1, 1, 1])
return torch.cat([x, y[..., :-2, 1:-1], y[..., 1:-1, :-2], y[..., 2:, 1:-1], y[..., 1:-1, 2:]], 1)


class ConvPlus(nn.Module): # standard convolution
def __init__(self, c1, c2, k=3, s=1, g=1, bias=True): # ch_in, ch_out, kernel, stride, groups
super(ConvPlus, self).__init__()
self.cv1 = nn.Conv2d(c1, c2, (k, 1), s, (k // 2, 0), groups=g, bias=bias)
self.cv2 = nn.Conv2d(c1, c2, (1, k), s, (0, k // 2), groups=g, bias=bias)

def forward(self, x):
return self.cv1(x) + self.cv2(x)


class SPP(nn.Module): # Spatial pyramid pooling layer used in YOLOv3-SPP
def __init__(self, c1, c2, k=(5, 9, 13)):
super(SPP, self).__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])

def forward(self, x):
x = self.cv1(x)
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))


class Flatten(nn.Module):
# Use after nn.AdaptiveAvgPool2d(1) to remove last 2 dimensions
def forward(self, x):
return x.view(x.size(0), -1)


class Focus(nn.Module):
# Focus wh information into c-space
def __init__(self, c1, c2, k=1):
super(Focus, self).__init__()
self.conv = Conv(c1 * 4, c2, k, 1)

def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))


class Concat(nn.Module):
# Concatenate a list of tensors along dimension
def __init__(self, dimension=1):
super(Concat, self).__init__()
self.d = dimension

def forward(self, x):
return torch.cat(x, self.d)


class MixConv2d(nn.Module):
# Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
super(MixConv2d, self).__init__()
groups = len(k)
if equal_ch: # equal c_ per group
i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
else: # equal weight.numel() per group
b = [c2] + [0] * groups
a = np.eye(groups + 1, groups, k=-1)
a -= np.roll(a, 1, axis=1)
a *= np.array(k) ** 2
a[0] = 1
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b

self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
self.bn = nn.BatchNorm2d(c2)
self.act = nn.LeakyReLU(0.1, inplace=True)

def forward(self, x):
return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))

+ 48
- 0
models/experimental.py View File

@@ -0,0 +1,48 @@
from models.common import *


class Sum(nn.Module):
# weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, n, weight=False): # n: number of inputs
super(Sum, self).__init__()
self.weight = weight # apply weights boolean
self.iter = range(n - 1) # iter object
if weight:
self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights

def forward(self, x):
y = x[0] # no weight
if self.weight:
w = torch.sigmoid(self.w) * 2
for i in self.iter:
y = y + x[i + 1] * w[i]
else:
for i in self.iter:
y = y + x[i + 1]
return y


class GhostConv(nn.Module):
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
super(GhostConv, self).__init__()
c_ = c2 // 2 # hidden channels
self.cv1 = Conv(c1, c_, k, s, g, act)
self.cv2 = Conv(c_, c_, 5, 1, c_, act)

def forward(self, x):
y = self.cv1(x)
return torch.cat([y, self.cv2(y)], 1)


class GhostBottleneck(nn.Module):
def __init__(self, c1, c2, k, s):
super(GhostBottleneck, self).__init__()
c_ = c2 // 2
self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()

def forward(self, x):
return self.conv(x) + self.shortcut(x)

+ 197
- 0
models/yolo.py View File

@@ -0,0 +1,197 @@
import argparse

import yaml

from models.common import *


class Detect(nn.Module):
def __init__(self, nc=80, anchors=()): # detection layer
super(Detect, self).__init__()
self.stride = None # strides computed during build
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors
self.grid = [torch.zeros(1)] * self.nl # init grid
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
self.register_buffer('anchors', a) # shape(nl,na,2)
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
self.export = False # onnx export

def forward(self, x):
x = x.copy()
z = [] # inference output
self.training |= self.export
for i in range(self.nl):
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

if not self.training: # inference
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)

y = x[i].sigmoid()
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
z.append(y.view(bs, -1, self.no))

return x if self.training else (torch.cat(z, 1), x)

@staticmethod
def _make_grid(nx=20, ny=20):
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()


class Model(nn.Module):
def __init__(self, model_yaml='yolov5s.yaml'): # cfg, number of classes, depth-width gains
super(Model, self).__init__()
with open(model_yaml) as f:
self.md = yaml.load(f, Loader=yaml.FullLoader) # model dict

# Define model
self.model, self.save, ch = parse_model(self.md, ch=[3]) # model, savelist, ch_out
# print([x.shape for x in self.forward(torch.zeros(1, 3, 64, 64))])

# Build strides, anchors
m = self.model[-1] # Detect()
m.stride = torch.tensor([64 / x.shape[-2] for x in self.forward(torch.zeros(1, 3, 64, 64))]) # forward
m.anchors /= m.stride.view(-1, 1, 1)
self.stride = m.stride

# Init weights, biases
torch_utils.initialize_weights(self)
self._initialize_biases() # only run once
torch_utils.model_info(self)
print('')

def forward(self, x, augment=False, profile=False):
y, ts = [], 0 # outputs
for m in self.model:
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers

if profile:
import thop
o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # FLOPS
t = torch_utils.time_synchronized()
for _ in range(10):
_ = m(x)
dt = torch_utils.time_synchronized() - t
ts += dt
print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt * 100, m.type))

x = m(x) # run
y.append(x if m.i in self.save else None) # save output

if profile:
print(ts * 100)
return x

def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
m = self.model[-1] # Detect() module
for f, s in zip(m.f, m.stride): #  from
mi = self.model[f % m.i]
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
b[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
b[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)

def _print_biases(self):
m = self.model[-1] # Detect() module
for f in sorted([x % m.i for x in m.f]): #  from
b = self.model[f].bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
print(('%g Conv2d.bias:' + '%10.3g' * 6) % (f, *b[:5].mean(1).tolist(), b[5:].mean()))


def parse_model(md, ch): # model_dict, input_channels(3)
print('\n%3s%15s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
anchors, nc, gd, gw = md['anchors'], md['nc'], md['depth_multiple'], md['width_multiple']
na = (len(anchors[0]) // 2) # number of anchors
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)

layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
for i, (f, n, m, args) in enumerate(md['backbone'] + md['head']): # from, number, module, args
m = eval(m) if isinstance(m, str) else m # eval strings
for j, a in enumerate(args):
try:
args[j] = eval(a) if isinstance(a, str) else a # eval strings
except:
pass

n = max(round(n * gd), 1) if n > 1 else n # depth gain
if m in [nn.Conv2d, Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, ConvPlus, BottleneckCSP, BottleneckCSPF, BottleneckLight]:
c1, c2 = ch[f], args[0]

# Normal
# if i > 0 and args[0] != no: # channel expansion factor
# ex = 1.75 # exponential (default 2.0)
# e = math.log(c2 / ch[1]) / math.log(2)
# c2 = int(ch[1] * ex ** e)
# if m != Focus:
c2 = make_divisible(c2 * gw, 8) if c2 != no else c2

# Experimental
# if i > 0 and args[0] != no: # channel expansion factor
# ex = 1 + gw # exponential (default 2.0)
# ch1 = 32 # ch[1]
# e = math.log(c2 / ch1) / math.log(2) # level 1-n
# c2 = int(ch1 * ex ** e)
# if m != Focus:
# c2 = make_divisible(c2, 8) if c2 != no else c2

args = [c1, c2, *args[1:]]
if m in [BottleneckCSP, BottleneckCSPF]:
args += [n]
n = 1
elif m is nn.BatchNorm2d:
args = [ch[f]]
elif m is Concat:
c2 = sum([ch[x] for x in f])
elif m is Origami:
c2 = ch[f] * 5
elif m is Detect:
f = f or list(reversed([(-1 if j == i else j - 1) for j, x in enumerate(ch) if x == no]))
else:
c2 = ch[f]

m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
t = str(m)[8:-2].replace('__main__.', '') # module type
np = sum([x.numel() for x in m_.parameters()]) # number params
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
print('%3s%15s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
layers.append(m_)
ch.append(c2)
return nn.Sequential(*layers), sorted(save), ch


if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
opt = parser.parse_args()
opt.cfg = glob.glob('./**/' + opt.cfg, recursive=True)[0] # find file
device = torch_utils.select_device(opt.device)

# Create model
model = Model(opt.cfg).to(device)
model.train()

# Profile
# img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
# y = model(img, profile=True)
# print([y[0].shape] + [x.shape for x in y[1]])

# ONNX export
# model.model[-1].export = True
# torch.onnx.export(model, img, f.replace('.yaml', '.onnx'), verbose=True, opset_version=11)

# Tensorboard
# from torch.utils.tensorboard import SummaryWriter
# tb_writer = SummaryWriter()
# print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/")
# tb_writer.add_graph(model.model, img) # add model to tensorboard
# tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard

+ 55
- 0
models/yolov3-spp.yaml View File

@@ -0,0 +1,55 @@
# parameters
nc: 80 # number of classes
depth_multiple: 1.0 # expand model depth
width_multiple: 1.0 # expand layer channels

# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32

# darknet53 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [32, 3, 1]], # 0
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
[-1, 1, Bottleneck, [64]],
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
[-1, 2, Bottleneck, [128]],
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
[-1, 8, Bottleneck, [256]],
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
[-1, 8, Bottleneck, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
[-1, 4, Bottleneck, [1024]], # 10
]

# yolov3-spp head
# na = len(anchors[0])
head:
[[-1, 1, Bottleneck, [1024, False]], # 11
[-1, 1, SPP, [512, [5, 9, 13]]],
[-1, 1, Conv, [1024, 3, 1]],
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, Conv, [1024, 3, 1]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 16 (P5/32-large)

[-3, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 8], 1, Concat, [1]], # cat backbone P4
[-1, 1, Bottleneck, [512, False]],
[-1, 1, Bottleneck, [512, False]],
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, Conv, [512, 3, 1]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 24 (P4/16-medium)

[-3, 1, Conv, [128, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P3
[-1, 1, Bottleneck, [256, False]],
[-1, 2, Bottleneck, [256, False]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 30 (P3/8-small)

[[], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

+ 55
- 0
models/yolov3-spp_csp.yaml View File

@@ -0,0 +1,55 @@
# parameters
nc: 80 # number of classes
depth_multiple: 1.0 # expand model depth
width_multiple: 1.0 # expand layer channels

# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32

# darknet53 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [32, 3, 1]], # 0
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
[-1, 1, BottleneckCSP, [64]],
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
[-1, 2, BottleneckCSP, [128]],
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
[-1, 8, BottleneckCSP, [256]],
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
[-1, 8, BottleneckCSP, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
[-1, 4, BottleneckCSP, [1024]], # 10
]

# yolov3-spp head
# na = len(anchors[0])
head:
[[-1, 1, Bottleneck, [1024, False]], # 11
[-1, 1, SPP, [512, [5, 9, 13]]],
[-1, 1, Conv, [1024, 3, 1]],
[-1, 1, Conv, [512, 1, 1]],
[-1, 1, Conv, [1024, 3, 1]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 16 (P5/32-large)

[-3, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 8], 1, Concat, [1]], # cat backbone P4
[-1, 1, Bottleneck, [512, False]],
[-1, 1, Bottleneck, [512, False]],
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, Conv, [512, 3, 1]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 24 (P4/16-medium)

[-3, 1, Conv, [128, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P3
[-1, 1, Bottleneck, [256, False]],
[-1, 2, Bottleneck, [256, False]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 30 (P3/8-small)

[[], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

+ 45
- 0
models/yolov5l.yaml View File

@@ -0,0 +1,45 @@
# parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple

# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32

# yolov5 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Focus, [64, 3]], # 1-P1/2
[-1, 1, Conv, [128, 3, 2]], # 2-P2/4
[-1, 3, Bottleneck, [128]],
[-1, 1, Conv, [256, 3, 2]], # 4-P3/8
[-1, 9, Bottleneck, [256]],
[-1, 1, Conv, [512, 3, 2]], # 6-P4/16
[-1, 9, Bottleneck, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 8-P5/32
[-1, 1, SPP, [1024, [5, 9, 13]]],
[-1, 3, Bottleneck, [1024]], # 10
]

# yolov5 head
head:
[[-1, 3, Bottleneck, [1024, False]], # 11
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 12 (P5/32-large)

[-2, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 1, Conv, [512, 1, 1]],
[-1, 3, Bottleneck, [512, False]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 17 (P4/16-medium)

[-2, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 1, Conv, [256, 1, 1]],
[-1, 3, Bottleneck, [256, False]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 22 (P3/8-small)

[[], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

+ 46
- 0
models/yolov5m.yaml View File

@@ -0,0 +1,46 @@
# parameters
nc: 80 # number of classes
depth_multiple: 0.67 # model depth multiple
width_multiple: 0.75 # layer channel multiple

# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32

# yolov5 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Focus, [64, 3]], # 1-P1/2
[-1, 1, Conv, [128, 3, 2]], # 2-P2/4
[-1, 3, Bottleneck, [128]],
[-1, 1, Conv, [256, 3, 2]], # 4-P3/8
[-1, 9, Bottleneck, [256]],
[-1, 1, Conv, [512, 3, 2]], # 6-P4/16
[-1, 9, Bottleneck, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 8-P5/32
[-1, 1, SPP, [1024, [5, 9, 13]]],
[-1, 3, Bottleneck, [1024]], # 10
]

# yolov5 head
head:
[[-1, 3, Bottleneck, [1024, False]], # 11
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 12 (P5/32-large)

[-2, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 1, Conv, [512, 1, 1]],
[-1, 3, Bottleneck, [512, False]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 17 (P4/16-medium)

[-2, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 1, Conv, [256, 1, 1]],
[-1, 3, Bottleneck, [256, False]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 22 (P3/8-small)

[[], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]


+ 45
- 0
models/yolov5s.yaml View File

@@ -0,0 +1,45 @@
# parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple

# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32

# yolov5 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Focus, [64, 3]], # 1-P1/2
[-1, 1, Conv, [128, 3, 2]], # 2-P2/4
[-1, 3, Bottleneck, [128]],
[-1, 1, Conv, [256, 3, 2]], # 4-P3/8
[-1, 9, Bottleneck, [256]],
[-1, 1, Conv, [512, 3, 2]], # 6-P4/16
[-1, 9, Bottleneck, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 8-P5/32
[-1, 1, SPP, [1024, [5, 9, 13]]],
[-1, 3, Bottleneck, [1024]], # 10
]

# yolov5 head
head:
[[-1, 3, Bottleneck, [1024, False]], # 11
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 12 (P5/32-large)

[-2, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 1, Conv, [512, 1, 1]],
[-1, 3, Bottleneck, [512, False]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 17 (P4/16-medium)

[-2, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 1, Conv, [256, 1, 1]],
[-1, 3, Bottleneck, [256, False]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 22 (P3/8-small)

[[], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

+ 46
- 0
models/yolov5s_csp.yaml View File

@@ -0,0 +1,46 @@
# parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple

# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32

# yolov5 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Focus, [64, 3]], # 1-P1/2
[-1, 1, Conv, [128, 3, 2]], # 2-P2/4
[-1, 3, BottleneckCSP, [128]],
[-1, 1, Conv, [256, 3, 2]], # 4-P3/8
[-1, 9, BottleneckCSP, [256]],
[-1, 1, Conv, [512, 3, 2]], # 6-P4/16
[-1, 9, BottleneckCSP, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 8-P5/32
[-1, 1, SPP, [1024, [5, 9, 13]]],
[-1, 3, BottleneckCSP, [1024]], # 10
]

# yolov5 head
head:
[[-1, 3, Bottleneck, [1024, False]], # 11
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 12 (P5/32-large)

[-2, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 1, Conv, [512, 1, 1]],
[-1, 3, Bottleneck, [512, False]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 17 (P4/16-medium)

[-2, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 1, Conv, [256, 1, 1]],
[-1, 3, Bottleneck, [256, False]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 22 (P3/8-small)

[[], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]


+ 46
- 0
models/yolov5s_csp1.yaml View File

@@ -0,0 +1,46 @@
# parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple

# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32

# yolov5 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Focus, [64, 3]], # 1-P1/2
[-1, 1, Conv, [128, 3, 2]], # 2-P2/4
[-1, 3, BottleneckCSP, [128]],
[-1, 1, Conv, [256, 3, 2]], # 4-P3/8
[-1, 9, BottleneckCSP, [256]],
[-1, 1, Conv, [512, 3, 2]], # 6-P4/16
[-1, 9, BottleneckCSP, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 8-P5/32
[-1, 1, SPP, [1024, [5, 9, 13]]],
[-1, 6, BottleneckCSP, [1024]], # 10
]

# yolov5 head
head:
[[-1, 3, Bottleneck, [1024, False]], # 11
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 12 (P5/32-large)

[-2, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 1, Conv, [512, 1, 1]],
[-1, 3, Bottleneck, [512, False]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 17 (P4/16-medium)

[-2, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 1, Conv, [256, 1, 1]],
[-1, 3, Bottleneck, [256, False]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 22 (P3/8-small)

[[], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]


+ 46
- 0
models/yolov5s_csp2.yaml View File

@@ -0,0 +1,46 @@
# parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple

# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32

# yolov5 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Focus, [64, 3]], # 1-P1/2
[-1, 1, Conv, [128, 3, 2]], # 2-P2/4
[-1, 3, BottleneckCSP, [128]],
[-1, 1, Conv, [256, 3, 2]], # 4-P3/8
[-1, 9, BottleneckCSP, [256]],
[-1, 1, Conv, [512, 3, 2]], # 6-P4/16
[-1, 9, BottleneckCSP, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 8-P5/32
[-1, 1, SPP, [1024, [5, 9, 13]]],
[-1, 6, BottleneckCSP, [1024]], # 10
]

# yolov5 head
head:
[[-1, 3, BottleneckCSPF, [1024]], # 11
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 12 (P5/32-large)

[-2, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 1, Conv, [512, 1, 1]],
[-1, 3, BottleneckCSPF, [512]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 17 (P4/16-medium)

[-2, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 1, Conv, [256, 1, 1]],
[-1, 3, BottleneckCSPF, [256]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 22 (P3/8-small)

[[], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]


+ 45
- 0
models/yolov5x.yaml View File

@@ -0,0 +1,45 @@
# parameters
nc: 80 # number of classes
depth_multiple: 1.33 # model depth multiple
width_multiple: 1.25 # layer channel multiple

# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32

# yolov5 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Focus, [64, 3]], # 1-P1/2
[-1, 1, Conv, [128, 3, 2]], # 2-P2/4
[-1, 3, Bottleneck, [128]],
[-1, 1, Conv, [256, 3, 2]], # 4-P3/8
[-1, 9, Bottleneck, [256]],
[-1, 1, Conv, [512, 3, 2]], # 6-P4/16
[-1, 9, Bottleneck, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 8-P5/32
[-1, 1, SPP, [1024, [5, 9, 13]]],
[-1, 3, Bottleneck, [1024]], # 10
]

# yolov5 head
head:
[[-1, 3, Bottleneck, [1024]], # 11
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 12 (P5/32-large)

[-2, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 1, Conv, [512, 1, 1]],
[-1, 3, Bottleneck, [512, False]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 17 (P4/16-medium)

[-2, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 1, Conv, [256, 1, 1]],
[-1, 3, Bottleneck, [256, False]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], # 22 (P3/8-small)

[[], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

+ 22
- 0
requirements.txt View File

@@ -0,0 +1,22 @@
# pip install -U -r requirements.txt
numpy==1.17
opencv-python
torch >= 1.5
matplotlib
pycocotools
tqdm
pillow
tensorboard
pyyaml


# Nvidia Apex (optional) for mixed precision training --------------------------
# git clone https://github.com/NVIDIA/apex && cd apex && pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" . --user && cd .. && rm -rf apex

# Conda commands (in place of pip) ---------------------------------------------
# conda update -yn base -c defaults conda
# conda install -yc anaconda numpy opencv matplotlib tqdm pillow ipython
# conda install -yc conda-forge scikit-image pycocotools tensorboard
# conda install -yc spyder-ide spyder-line-profiler
# conda install -yc pytorch pytorch torchvision
# conda install -yc conda-forge protobuf numpy && pip install onnx # https://github.com/onnx/onnx#linux-and-macos

+ 268
- 0
test.py View File

@@ -0,0 +1,268 @@
import argparse
import json

import yaml
from torch.utils.data import DataLoader

from utils.datasets import *
from utils.utils import *


def test(data,
weights=None,
batch_size=16,
imgsz=640,
conf_thres=0.001,
iou_thres=0.6, # for nms
save_json=False,
single_cls=False,
augment=False,
model=None,
dataloader=None,
multi_label=True,
verbose=False): # 0 fast, 1 accurate
# Initialize/load model and set device
if model is None:
device = torch_utils.select_device(opt.device, batch_size=batch_size)

# Remove previous
for f in glob.glob('test_batch*.jpg'):
os.remove(f)

# Load model
google_utils.attempt_download(weights)
model = torch.load(weights, map_location=device)['model']
torch_utils.model_info(model)

# Fuse
# model.fuse()
model.to(device)

if device.type != 'cpu' and torch.cuda.device_count() > 1:
model = nn.DataParallel(model)

training = False
else: # called by train.py
device = next(model.parameters()).device # get model device
training = True

# Configure run
with open(data) as f:
data = yaml.load(f, Loader=yaml.FullLoader) # model dict
nc = 1 if single_cls else int(data['nc']) # number of classes
iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
# iouv = iouv[0].view(1) # comment for mAP@0.5:0.95
niou = iouv.numel()

# Dataloader
if dataloader is None:
path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images
dataset = LoadImagesAndLabels(path, imgsz, batch_size, rect=True, single_cls=opt.single_cls)
batch_size = min(batch_size, len(dataset))
dataloader = DataLoader(dataset,
batch_size=batch_size,
num_workers=min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]),
pin_memory=True,
collate_fn=dataset.collate_fn)

seen = 0
model.eval()
_ = model(torch.zeros((1, 3, imgsz, imgsz), device=device)) if device.type != 'cpu' else None # run once
coco91class = coco80_to_coco91_class()
s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
loss = torch.zeros(3, device=device)
jdict, stats, ap, ap_class = [], [], [], []
for batch_i, (imgs, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
imgs = imgs.to(device).float() / 255.0 # uint8 to float32, 0 - 255 to 0.0 - 1.0
targets = targets.to(device)
nb, _, height, width = imgs.shape # batch size, channels, height, width
whwh = torch.Tensor([width, height, width, height]).to(device)

# Disable gradients
with torch.no_grad():
# Run model
t = torch_utils.time_synchronized()
inf_out, train_out = model(imgs, augment=augment) # inference and training outputs
t0 += torch_utils.time_synchronized() - t

# Compute loss
if training: # if model has loss hyperparameters
loss += compute_loss(train_out, targets, model)[1][:3] # GIoU, obj, cls

# Run NMS
t = torch_utils.time_synchronized()
output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, multi_label=multi_label)
t1 += torch_utils.time_synchronized() - t

# Statistics per image
for si, pred in enumerate(output):
labels = targets[targets[:, 0] == si, 1:]
nl = len(labels)
tcls = labels[:, 0].tolist() if nl else [] # target class
seen += 1

if pred is None:
if nl:
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
continue

# Append to text file
# with open('test.txt', 'a') as file:
# [file.write('%11.5g' * 7 % tuple(x) + '\n') for x in pred]

# Clip boxes to image bounds
clip_coords(pred, (height, width))

# Append to pycocotools JSON dictionary
if save_json:
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
image_id = int(Path(paths[si]).stem.split('_')[-1])
box = pred[:, :4].clone() # xyxy
scale_coords(imgs[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape
box = xyxy2xywh(box) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for p, b in zip(pred.tolist(), box.tolist()):
jdict.append({'image_id': image_id,
'category_id': coco91class[int(p[5])],
'bbox': [round(x, 3) for x in b],
'score': round(p[4], 5)})

# Assign all predictions as incorrect
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
if nl:
detected = [] # target indices
tcls_tensor = labels[:, 0]

# target boxes
tbox = xywh2xyxy(labels[:, 1:5]) * whwh

# Per target class
for cls in torch.unique(tcls_tensor):
ti = (cls == tcls_tensor).nonzero().view(-1) # prediction indices
pi = (cls == pred[:, 5]).nonzero().view(-1) # target indices

# Search for detections
if pi.shape[0]:
# Prediction to target ious
ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1) # best ious, indices

# Append detections
for j in (ious > iouv[0]).nonzero():
d = ti[i[j]] # detected target
if d not in detected:
detected.append(d)
correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
if len(detected) == nl: # all targets already located in image
break

# Append statistics (correct, conf, pcls, tcls)
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))

# Plot images
if batch_i < 1:
f = 'test_batch%g_gt.jpg' % batch_i # filename
plot_images(imgs, targets, paths, f, model.names) # ground truth
f = 'test_batch%g_pred.jpg' % batch_i
plot_images(imgs, output_to_target(output, width, height), paths, f, model.names) # predictions

# Compute statistics
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
if len(stats):
p, r, ap, f1, ap_class = ap_per_class(*stats)
p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, AP@0.5, AP@0.5:0.95]
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
else:
nt = torch.zeros(1)

# Print results
pf = '%20s' + '%12.3g' * 6 # print format
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))

# Print results per class
if verbose and nc > 1 and len(stats):
for i, c in enumerate(ap_class):
print(pf % (model.names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))

# Print speeds
t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
if not training:
print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)

# Save JSON
if save_json and map50 and len(jdict):
imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataloader.dataset.img_files]
f = 'detections_val2017_%s_results.json' % \
(weights.split(os.sep)[-1].replace('.pt', '') if weights else '') # filename
print('\nCOCO mAP with pycocotools... saving %s...' % f)
with open(f, 'w') as file:
json.dump(jdict, file)

try:
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval

# https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0]) # initialize COCO ground truth api
cocoDt = cocoGt.loadRes(f) # initialize COCO pred api

cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
cocoEval.params.imgIds = imgIds # [:32] # only evaluate these images
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
map, map50 = cocoEval.stats[:2] # update to pycocotools results (mAP@0.5:0.95, mAP@0.5)
except:
print('WARNING: pycocotools must be installed with numpy==1.17 to run correctly. '
'See https://github.com/cocodataset/cocoapi/issues/356')

# Return results
maps = np.zeros(nc) + map
for i, c in enumerate(ap_class):
maps[c] = ap[i]
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t


if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument('--weights', type=str, default='weights/yolov5s.pt', help='model.pt path')
parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path')
parser.add_argument('--batch-size', type=int, default=16, help='size of each image batch')
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS')
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
parser.add_argument('--task', default='val', help="'val', 'test', 'study'")
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--verbose', action='store_true', help='report mAP by class')
opt = parser.parse_args()
opt.save_json = opt.save_json or opt.data.endswith(os.sep + 'coco.yaml')
opt.data = glob.glob('./**/' + opt.data, recursive=True)[0] # find file
print(opt)

# task = 'val', 'test', 'study'
if opt.task == 'val': # (default) run normally
test(opt.data,
opt.weights,
opt.batch_size,
opt.img_size,
opt.conf_thres,
opt.iou_thres,
opt.save_json,
opt.single_cls,
opt.augment)

elif opt.task == 'study': # run over a range of settings and save/plot
for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolovl.p5', 'yolov5x.pt', 'yolov3-spp.pt']:
f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to
x = list(range(256, 1024, 32)) # x axis
y = [] # y axis
for i in x: # img-size
print('\nRunning %s point %s...' % (f, i))
r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json)
y.append(r + t) # results and times
np.savetxt(f, y, fmt='%10.4g') # save
plot_study_txt(f, x) # plot

+ 443
- 0
train.py View File

@@ -0,0 +1,443 @@
import argparse

import torch.distributed as dist
import torch.nn.functional as F
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import yaml
from torch.utils.tensorboard import SummaryWriter

import test # import test.py to get mAP after each epoch
from models.yolo import Model
from utils.datasets import *
from utils.utils import *

mixed_precision = True
try: # Mixed precision training https://github.com/NVIDIA/apex
from apex import amp
except:
print('Apex recommended for faster mixed precision training: https://github.com/NVIDIA/apex')
mixed_precision = False # not installed

wdir = 'weights' + os.sep # weights dir
last = wdir + 'last.pt'
best = wdir + 'best.pt'
results_file = 'results.txt'

# Hyperparameters
hyp = {'lr0': 0.01, # initial learning rate (SGD=1E-2, Adam=1E-3)
'momentum': 0.937, # SGD momentum
'weight_decay': 5e-4, # optimizer weight decay
'giou': 0.05, # giou loss gain
'cls': 0.58, # cls loss gain
'cls_pw': 1.0, # cls BCELoss positive_weight
'obj': 1.0, # obj loss gain (*=img_size/320 if img_size != 320)
'obj_pw': 1.0, # obj BCELoss positive_weight
'iou_t': 0.20, # iou training threshold
'anchor_t': 4.0, # anchor-multiple threshold
'fl_gamma': 0.0, # focal loss gamma (efficientDet default is gamma=1.5)
'hsv_h': 0.014, # image HSV-Hue augmentation (fraction)
'hsv_s': 0.68, # image HSV-Saturation augmentation (fraction)
'hsv_v': 0.36, # image HSV-Value augmentation (fraction)
'degrees': 0.0, # image rotation (+/- deg)
'translate': 0.0, # image translation (+/- fraction)
'scale': 0.5, # image scale (+/- gain)
'shear': 0.0} # image shear (+/- deg)
print(hyp)

# Overwrite hyp with hyp*.txt (optional)
f = glob.glob('hyp*.txt')
if f:
print('Using %s' % f[0])
for k, v in zip(hyp.keys(), np.loadtxt(f[0])):
hyp[k] = v

# Print focal loss if gamma > 0
if hyp['fl_gamma']:
print('Using FocalLoss(gamma=%g)' % hyp['fl_gamma'])


def train(hyp):
epochs = opt.epochs # 300
batch_size = opt.batch_size # 64
weights = opt.weights # initial training weights

# Configure
init_seeds()
with open(opt.data) as f:
data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict
train_path = data_dict['train']
test_path = data_dict['val']
nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes

# Remove previous results
for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
os.remove(f)

# Create model
model = Model(opt.cfg).to(device)

# Image sizes
gs = int(max(model.stride)) # grid size (max stride)
if any(x % gs != 0 for x in opt.img_size):
print('WARNING: --img-size %g,%g must be multiple of %s max stride %g' % (*opt.img_size, opt.cfg, gs))
imgsz, imgsz_test = [make_divisible(x, gs) for x in opt.img_size] # image sizes (train, test)

# Optimizer
nbs = 64 # nominal batch size
accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
for k, v in model.named_parameters():
if v.requires_grad:
if '.bias' in k:
pg2.append(v) # biases
elif '.weight' in k and '.bn' not in k:
pg1.append(v) # apply weight decay
else:
pg0.append(v) # all else

optimizer = optim.Adam(pg0, lr=hyp['lr0']) if opt.adam else \
optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
del pg0, pg1, pg2

# Load Model
google_utils.attempt_download(weights)
start_epoch, best_fitness = 0, 0.0
if weights.endswith('.pt'): # pytorch format
chkpt = torch.load(weights, map_location=device)

# load model
try:
chkpt['model'] = \
{k: v for k, v in chkpt['model'].state_dict().items() if model.state_dict()[k].numel() == v.numel()}
model.load_state_dict(chkpt['model'], strict=False)
except KeyError as e:
s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s." \
% (opt.weights, opt.cfg, opt.weights)
raise KeyError(s) from e

# load optimizer
if chkpt['optimizer'] is not None:
optimizer.load_state_dict(chkpt['optimizer'])
best_fitness = chkpt['best_fitness']

# load results
if chkpt.get('training_results') is not None:
with open(results_file, 'w') as file:
file.write(chkpt['training_results']) # write results.txt

start_epoch = chkpt['epoch'] + 1
del chkpt

# Mixed precision training https://github.com/NVIDIA/apex
if mixed_precision:
model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)

# Scheduler https://arxiv.org/pdf/1812.01187.pdf
lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.9 + 0.1 # cosine
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
scheduler.last_epoch = start_epoch - 1 # do not move
# https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822
# plot_lr_scheduler(optimizer, scheduler, epochs)

# Initialize distributed training
if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available():
dist.init_process_group(backend='nccl', # distributed backend
init_method='tcp://127.0.0.1:9999', # init method
world_size=1, # number of nodes
rank=0) # node rank
model = torch.nn.parallel.DistributedDataParallel(model)

# Dataset
dataset = LoadImagesAndLabels(train_path, imgsz, batch_size,
augment=True,
hyp=hyp, # augmentation hyperparameters
rect=opt.rect, # rectangular training
cache_images=opt.cache_images,
single_cls=opt.single_cls)
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Correct your labels or your model.' % (mlc, nc, opt.cfg)

# Dataloader
batch_size = min(batch_size, len(dataset))
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
dataloader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size,
num_workers=nw,
shuffle=not opt.rect, # Shuffle=True unless rectangular training is used
pin_memory=True,
collate_fn=dataset.collate_fn)

# Testloader
testloader = torch.utils.data.DataLoader(LoadImagesAndLabels(test_path, imgsz_test, batch_size,
hyp=hyp,
rect=True,
cache_images=opt.cache_images,
single_cls=opt.single_cls),
batch_size=batch_size,
num_workers=nw,
pin_memory=True,
collate_fn=dataset.collate_fn)

# Model parameters
hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset
model.nc = nc # attach number of classes to model
model.hyp = hyp # attach hyperparameters to model
model.gr = 1.0 # giou loss ratio (obj_loss = 1.0 or giou)
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
model.names = data_dict['names']

# class frequency
labels = np.concatenate(dataset.labels, 0)
c = torch.tensor(labels[:, 0]) # classes
# cf = torch.bincount(c.long(), minlength=nc) + 1.
# model._initialize_biases(cf.to(device))
plot_labels(labels)
tb_writer.add_histogram('classes', c, 0)

# Exponential moving average
ema = torch_utils.ModelEMA(model)

# Start training
t0 = time.time()
nb = len(dataloader) # number of batches
n_burn = max(3 * nb, 1e3) # burn-in iterations, max(3 epochs, 1k iterations)
maps = np.zeros(nc) # mAP per class
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
print('Image sizes %g train, %g test' % (imgsz, imgsz_test))
print('Using %g dataloader workers' % nw)
print('Starting training for %g epochs...' % epochs)
# torch.autograd.set_detect_anomaly(True)
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
model.train()

# Update image weights (optional)
if dataset.image_weights:
w = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights
image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n) # rand weighted idx

mloss = torch.zeros(4, device=device) # mean losses
print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
pbar = tqdm(enumerate(dataloader), total=nb) # progress bar
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
ni = i + nb * epoch # number integrated batches (since train start)
imgs = imgs.to(device).float() / 255.0 # uint8 to float32, 0 - 255 to 0.0 - 1.0

# Burn-in
if ni <= n_burn:
xi = [0, n_burn] # x interp
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou)
accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
for j, x in enumerate(optimizer.param_groups):
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
if 'momentum' in x:
x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']])

# Multi-scale
if True:
imgsz = random.randrange(640, 640 + gs) // gs * gs
sf = imgsz / max(imgs.shape[2:]) # scale factor
if sf != 1:
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

# Forward
pred = model(imgs)

# Loss
loss, loss_items = compute_loss(pred, targets.to(device), model)
if not torch.isfinite(loss):
print('WARNING: non-finite loss, ending training ', loss_items)
return results

# Backward
if mixed_precision:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()

# Optimize
if ni % accumulate == 0:
optimizer.step()
optimizer.zero_grad()
ema.update(model)

# Print
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
mem = '%.3gG' % (torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0) # (GB)
s = ('%10s' * 2 + '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgsz)
pbar.set_description(s)

# Plot
if ni < 3:
f = 'train_batch%g.jpg' % i # filename
res = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
if tb_writer:
tb_writer.add_image(f, res, dataformats='HWC', global_step=epoch)
# tb_writer.add_graph(model, imgs) # add model to tensorboard

# end batch ------------------------------------------------------------------------------------------------

# Scheduler
scheduler.step()

# mAP
ema.update_attr(model)
final_epoch = epoch + 1 == epochs
if not opt.notest or final_epoch: # Calculate mAP
results, maps, times = test.test(opt.data,
batch_size=batch_size,
imgsz=imgsz_test,
save_json=final_epoch and opt.data.endswith(os.sep + 'coco.yaml'),
model=ema.ema,
single_cls=opt.single_cls,
dataloader=testloader,
multi_label=ni > n_burn)

# Write
with open(results_file, 'a') as f:
f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
if len(opt.name) and opt.bucket:
os.system('gsutil cp results.txt gs://%s/results/results%s.txt' % (opt.bucket, opt.name))

# Tensorboard
if tb_writer:
tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss',
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/F1',
'val/giou_loss', 'val/obj_loss', 'val/cls_loss']
for x, tag in zip(list(mloss[:-1]) + list(results), tags):
tb_writer.add_scalar(tag, x, epoch)

# Update best mAP
fi = fitness(np.array(results).reshape(1, -1)) # fitness_i = weighted combination of [P, R, mAP, F1]
if fi > best_fitness:
best_fitness = fi

# Save model
save = (not opt.nosave) or (final_epoch and not opt.evolve)
if save:
with open(results_file, 'r') as f: # create checkpoint
chkpt = {'epoch': epoch,
'best_fitness': best_fitness,
'training_results': f.read(),
'model': ema.ema.module if hasattr(model, 'module') else ema.ema,
'optimizer': None if final_epoch else optimizer.state_dict()}

# Save last, best and delete
torch.save(chkpt, last)
if (best_fitness == fi) and not final_epoch:
torch.save(chkpt, best)
del chkpt

# end epoch ----------------------------------------------------------------------------------------------------
# end training

n = opt.name
if len(n):
n = '_' + n if not n.isnumeric() else n
fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'], [flast, fbest, fresults]):
if os.path.exists(f1):
os.rename(f1, f2) # rename
ispt = f2.endswith('.pt') # is *.pt
strip_optimizer(f2) if ispt else None # strip optimizer
os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket and ispt else None # upload

if not opt.evolve:
plot_results() # save as results.png
print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
dist.destroy_process_group() if torch.cuda.device_count() > 1 else None
torch.cuda.empty_cache()
return results


if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--batch-size', type=int, default=16)
parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='*.cfg path')
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', action='store_true', help='resume training from last.pt')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--notest', action='store_true', help='only test final epoch')
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
parser.add_argument('--weights', type=str, default='', help='initial weights path')
parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--adam', action='store_true', help='use adam optimizer')
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
opt = parser.parse_args()
opt.weights = last if opt.resume else opt.weights
opt.cfg = glob.glob('./**/' + opt.cfg, recursive=True)[0] # find file
opt.data = glob.glob('./**/' + opt.data, recursive=True)[0] # find file
print(opt)
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)
# check_git_status()
if device.type == 'cpu':
mixed_precision = False

# Train
if not opt.evolve:
tb_writer = SummaryWriter(comment=opt.name)
print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')
train(hyp)

# Evolve hyperparameters (optional)
else:
tb_writer = None
opt.notest, opt.nosave = True, True # only test/save final epoch
if opt.bucket:
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists

for _ in range(10): # generations to evolve
if os.path.exists('evolve.txt'): # if evolve.txt exists: select best hyps and mutate
# Select parent(s)
parent = 'single' # parent selection method: 'single' or 'weighted'
x = np.loadtxt('evolve.txt', ndmin=2)
n = min(5, len(x)) # number of previous results to consider
x = x[np.argsort(-fitness(x))][:n] # top n mutations
w = fitness(x) - fitness(x).min() # weights
if parent == 'single' or len(x) == 1:
# x = x[random.randint(0, n - 1)] # random selection
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
elif parent == 'weighted':
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination

# Mutate
mp, s = 0.9, 0.2 # mutation probability, sigma
npr = np.random
npr.seed(int(time.time()))
g = np.array([1, 1, 1, 1, 1, 1, 1, 0, .1, 1, 0, 1, 1, 1, 1, 1, 1, 1]) # gains
ng = len(g)
v = np.ones(ng)
while all(v == 1): # mutate until a change occurs (prevent duplicates)
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
hyp[k] = x[i + 7] * v[i] # mutate

# Clip to limits
keys = ['lr0', 'iou_t', 'momentum', 'weight_decay', 'hsv_s', 'hsv_v', 'translate', 'scale', 'fl_gamma']
limits = [(1e-5, 1e-2), (0.00, 0.70), (0.60, 0.98), (0, 0.001), (0, .9), (0, .9), (0, .9), (0, .9), (0, 3)]
for k, v in zip(keys, limits):
hyp[k] = np.clip(hyp[k], v[0], v[1])

# Train mutation
results = train(hyp.copy())

# Write mutation results
print_mutation(hyp, results, opt.bucket)

# Plot results
# plot_evolution_results(hyp)

+ 733
- 0
tutorial.ipynb
File diff suppressed because it is too large
View File


+ 0
- 0
utils/__init__.py View File


+ 62
- 0
utils/activations.py View File

@@ -0,0 +1,62 @@
import torch
import torch.functional as F
import torch.nn as nn


# Swish ------------------------------------------------------------------------
class SwishImplementation(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x * torch.sigmoid(x)

@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_tensors[0]
sx = torch.sigmoid(x)
return grad_output * (sx * (1 + x * (1 - sx)))


class MemoryEfficientSwish(nn.Module):
@staticmethod
def forward(x):
return SwishImplementation.apply(x)


class HardSwish(nn.Module): # https://arxiv.org/pdf/1905.02244.pdf
@staticmethod
def forward(x):
return x * F.hardtanh(x + 3, 0., 6., True) / 6.


class Swish(nn.Module):
@staticmethod
def forward(x):
return x * torch.sigmoid(x)


# Mish ------------------------------------------------------------------------
class MishImplementation(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))

@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_tensors[0]
sx = torch.sigmoid(x)
fx = F.softplus(x).tanh()
return grad_output * (fx + x * sx * (1 - fx * fx))


class MemoryEfficientMish(nn.Module):
@staticmethod
def forward(x):
return MishImplementation.apply(x)


class Mish(nn.Module): # https://github.com/digantamisra98/Mish
@staticmethod
def forward(x):
return x * F.softplus(x).tanh()

+ 842
- 0
utils/datasets.py View File

@@ -0,0 +1,842 @@
import glob
import math
import os
import random
import shutil
import time
from pathlib import Path
from threading import Thread

import cv2
import numpy as np
import torch
from PIL import Image, ExifTags
from torch.utils.data import Dataset
from tqdm import tqdm

from utils.utils import xyxy2xywh, xywh2xyxy

help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.dng']
vid_formats = ['.mov', '.avi', '.mp4']

# Get orientation exif tag
for orientation in ExifTags.TAGS.keys():
if ExifTags.TAGS[orientation] == 'Orientation':
break


def exif_size(img):
# Returns exif-corrected PIL size
s = img.size # (width, height)
try:
rotation = dict(img._getexif().items())[orientation]
if rotation == 6: # rotation 270
s = (s[1], s[0])
elif rotation == 8: # rotation 90
s = (s[1], s[0])
except:
pass

return s


class LoadImages: # for inference
def __init__(self, path, img_size=416):
path = str(Path(path)) # os-agnostic
files = []
if os.path.isdir(path):
files = sorted(glob.glob(os.path.join(path, '*.*')))
elif os.path.isfile(path):
files = [path]

images = [x for x in files if os.path.splitext(x)[-1].lower() in img_formats]
videos = [x for x in files if os.path.splitext(x)[-1].lower() in vid_formats]
nI, nV = len(images), len(videos)

self.img_size = img_size
self.files = images + videos
self.nF = nI + nV # number of files
self.video_flag = [False] * nI + [True] * nV
self.mode = 'images'
if any(videos):
self.new_video(videos[0]) # new video
else:
self.cap = None
assert self.nF > 0, 'No images or videos found in ' + path

def __iter__(self):
self.count = 0
return self

def __next__(self):
if self.count == self.nF:
raise StopIteration
path = self.files[self.count]

if self.video_flag[self.count]:
# Read video
self.mode = 'video'
ret_val, img0 = self.cap.read()
if not ret_val:
self.count += 1
self.cap.release()
if self.count == self.nF: # last video
raise StopIteration
else:
path = self.files[self.count]
self.new_video(path)
ret_val, img0 = self.cap.read()

self.frame += 1
print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nF, self.frame, self.nframes, path), end='')

else:
# Read image
self.count += 1
img0 = cv2.imread(path) # BGR
assert img0 is not None, 'Image Not Found ' + path
print('image %g/%g %s: ' % (self.count, self.nF, path), end='')

# Padded resize
img = letterbox(img0, new_shape=self.img_size)[0]

# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)

# cv2.imwrite(path + '.letterbox.jpg', 255 * img.transpose((1, 2, 0))[:, :, ::-1]) # save letterbox image
return path, img, img0, self.cap

def new_video(self, path):
self.frame = 0
self.cap = cv2.VideoCapture(path)
self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))

def __len__(self):
return self.nF # number of files


class LoadWebcam: # for inference
def __init__(self, pipe=0, img_size=416):
self.img_size = img_size

if pipe == '0':
pipe = 0 # local camera
# pipe = 'rtsp://192.168.1.64/1' # IP camera
# pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login
# pipe = 'rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa' # IP traffic camera
# pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera

# https://answers.opencv.org/question/215996/changing-gstreamer-pipeline-to-opencv-in-pythonsolved/
# pipe = '"rtspsrc location="rtsp://username:password@192.168.1.64/1" latency=10 ! appsink' # GStreamer

# https://answers.opencv.org/question/200787/video-acceleration-gstremer-pipeline-in-videocapture/
# https://stackoverflow.com/questions/54095699/install-gstreamer-support-for-opencv-python-package # install help
# pipe = "rtspsrc location=rtsp://root:root@192.168.0.91:554/axis-media/media.amp?videocodec=h264&resolution=3840x2160 protocols=GST_RTSP_LOWER_TRANS_TCP ! rtph264depay ! queue ! vaapih264dec ! videoconvert ! appsink" # GStreamer

self.pipe = pipe
self.cap = cv2.VideoCapture(pipe) # video capture object
self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size

def __iter__(self):
self.count = -1
return self

def __next__(self):
self.count += 1
if cv2.waitKey(1) == ord('q'): # q to quit
self.cap.release()
cv2.destroyAllWindows()
raise StopIteration

# Read frame
if self.pipe == 0: # local camera
ret_val, img0 = self.cap.read()
img0 = cv2.flip(img0, 1) # flip left-right
else: # IP camera
n = 0
while True:
n += 1
self.cap.grab()
if n % 30 == 0: # skip frames
ret_val, img0 = self.cap.retrieve()
if ret_val:
break

# Print
assert ret_val, 'Camera Error %s' % self.pipe
img_path = 'webcam.jpg'
print('webcam %g: ' % self.count, end='')

# Padded resize
img = letterbox(img0, new_shape=self.img_size)[0]

# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)

return img_path, img, img0, None

def __len__(self):
return 0


class LoadStreams: # multiple IP or RTSP cameras
def __init__(self, sources='streams.txt', img_size=416):
self.mode = 'images'
self.img_size = img_size

if os.path.isfile(sources):
with open(sources, 'r') as f:
sources = [x.strip() for x in f.read().splitlines() if len(x.strip())]
else:
sources = [sources]

n = len(sources)
self.imgs = [None] * n
self.sources = sources
for i, s in enumerate(sources):
# Start the thread to read frames from the video stream
print('%g/%g: %s... ' % (i + 1, n, s), end='')
cap = cv2.VideoCapture(0 if s == '0' else s)
assert cap.isOpened(), 'Failed to open %s' % s
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS) % 100
_, self.imgs[i] = cap.read() # guarantee first frame
thread = Thread(target=self.update, args=([i, cap]), daemon=True)
print(' success (%gx%g at %.2f FPS).' % (w, h, fps))
thread.start()
print('') # newline

# check for common shapes
s = np.stack([letterbox(x, new_shape=self.img_size)[0].shape for x in self.imgs], 0) # inference shapes
self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
if not self.rect:
print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')

def update(self, index, cap):
# Read next stream frame in a daemon thread
n = 0
while cap.isOpened():
n += 1
# _, self.imgs[index] = cap.read()
cap.grab()
if n == 4: # read every 4th frame
_, self.imgs[index] = cap.retrieve()
n = 0
time.sleep(0.01) # wait time

def __iter__(self):
self.count = -1
return self

def __next__(self):
self.count += 1
img0 = self.imgs.copy()
if cv2.waitKey(1) == ord('q'): # q to quit
cv2.destroyAllWindows()
raise StopIteration

# Letterbox
img = [letterbox(x, new_shape=self.img_size, auto=self.rect)[0] for x in img0]

# Stack
img = np.stack(img, 0)

# Convert
img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
img = np.ascontiguousarray(img)

return self.sources, img, img0, None

def __len__(self):
return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years


class LoadImagesAndLabels(Dataset): # for training/testing
def __init__(self, path, img_size=416, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
cache_images=False, single_cls=False):
try:
path = str(Path(path)) # os-agnostic
parent = str(Path(path).parent) + os.sep
if os.path.isfile(path): # file
with open(path, 'r') as f:
f = f.read().splitlines()
f = [x.replace('./', parent) if x.startswith('./') else x for x in f] # local to global path
elif os.path.isdir(path): # folder
f = glob.iglob(path + os.sep + '*.*')
else:
raise Exception('%s does not exist' % path)
self.img_files = [x.replace('/', os.sep) for x in f if os.path.splitext(x)[-1].lower() in img_formats]
except:
raise Exception('Error loading data from %s. See %s' % (path, help_url))

n = len(self.img_files)
assert n > 0, 'No images found in %s. See %s' % (path, help_url)
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
nb = bi[-1] + 1 # number of batches

self.n = n # number of images
self.batch = bi # batch index of image
self.img_size = img_size
self.augment = augment
self.hyp = hyp
self.image_weights = image_weights
self.rect = False if image_weights else rect
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)

# Define labels
self.label_files = [x.replace('images', 'labels').replace(os.path.splitext(x)[-1], '.txt')
for x in self.img_files]

# Rectangular Training https://github.com/ultralytics/yolov3/issues/232
if self.rect:
# Read image shapes (wh)
sp = path.replace('.txt', '') + '.shapes' # shapefile path
try:
with open(sp, 'r') as f: # read existing shapefile
s = [x.split() for x in f.read().splitlines()]
assert len(s) == n, 'Shapefile out of sync'
except:
s = [exif_size(Image.open(f)) for f in tqdm(self.img_files, desc='Reading image shapes')]
np.savetxt(sp, s, fmt='%g') # overwrites existing (if any)

# Sort by aspect ratio
s = np.array(s, dtype=np.float64)
ar = s[:, 1] / s[:, 0] # aspect ratio
irect = ar.argsort()
self.img_files = [self.img_files[i] for i in irect]
self.label_files = [self.label_files[i] for i in irect]
self.shapes = s[irect] # wh
ar = ar[irect]

# Set training image shapes
shapes = [[1, 1]] * nb
for i in range(nb):
ari = ar[bi == i]
mini, maxi = ari.min(), ari.max()
if maxi < 1:
shapes[i] = [maxi, 1]
elif mini > 1:
shapes[i] = [1, 1 / mini]

self.batch_shapes = np.ceil(np.array(shapes) * img_size / 64.).astype(np.int) * 64

# Cache labels
self.imgs = [None] * n
self.labels = [np.zeros((0, 5), dtype=np.float32)] * n
create_datasubset, extract_bounding_boxes, labels_loaded = False, False, False
nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate
np_labels_path = str(Path(self.label_files[0]).parent) + '.npy' # saved labels in *.npy file
if os.path.isfile(np_labels_path):
s = np_labels_path # print string
x = np.load(np_labels_path, allow_pickle=True)
if len(x) == n:
self.labels = x
labels_loaded = True
else:
s = path.replace('images', 'labels')

pbar = tqdm(self.label_files)
for i, file in enumerate(pbar):
if labels_loaded:
l = self.labels[i]
# np.savetxt(file, l, '%g') # save *.txt from *.npy file
else:
try:
with open(file, 'r') as f:
l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
except:
nm += 1 # print('missing labels for image %s' % self.img_files[i]) # file missing
continue

if l.shape[0]:
assert l.shape[1] == 5, '> 5 label columns: %s' % file
assert (l >= 0).all(), 'negative labels: %s' % file
assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels: %s' % file
if np.unique(l, axis=0).shape[0] < l.shape[0]: # duplicate rows
nd += 1 # print('WARNING: duplicate rows in %s' % self.label_files[i]) # duplicate rows
if single_cls:
l[:, 0] = 0 # force dataset into single-class mode
self.labels[i] = l
nf += 1 # file found

# Create subdataset (a smaller dataset)
if create_datasubset and ns < 1E4:
if ns == 0:
create_folder(path='./datasubset')
os.makedirs('./datasubset/images')
exclude_classes = 43
if exclude_classes not in l[:, 0]:
ns += 1
# shutil.copy(src=self.img_files[i], dst='./datasubset/images/') # copy image
with open('./datasubset/images.txt', 'a') as f:
f.write(self.img_files[i] + '\n')

# Extract object detection boxes for a second stage classifier
if extract_bounding_boxes:
p = Path(self.img_files[i])
img = cv2.imread(str(p))
h, w = img.shape[:2]
for j, x in enumerate(l):
f = '%s%sclassifier%s%g_%g_%s' % (p.parent.parent, os.sep, os.sep, x[0], j, p.name)
if not os.path.exists(Path(f).parent):
os.makedirs(Path(f).parent) # make new output folder

b = x[1:] * [w, h, w, h] # box
b[2:] = b[2:].max() # rectangle to square
b[2:] = b[2:] * 1.3 + 30 # pad
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)

b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
assert cv2.imwrite(f, img[b[1]:b[3], b[0]:b[2]]), 'Failure extracting classifier boxes'
else:
ne += 1 # print('empty labels for image %s' % self.img_files[i]) # file empty
# os.system("rm '%s' '%s'" % (self.img_files[i], self.label_files[i])) # remove

pbar.desc = 'Caching labels %s (%g found, %g missing, %g empty, %g duplicate, for %g images)' % (
s, nf, nm, ne, nd, n)
assert nf > 0 or n == 20288, 'No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url)
if not labels_loaded and n > 1000:
print('Saving labels to %s for faster future loading' % np_labels_path)
np.save(np_labels_path, self.labels) # save for next time

# Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
if cache_images: # if training
gb = 0 # Gigabytes of cached images
pbar = tqdm(range(len(self.img_files)), desc='Caching images')
self.img_hw0, self.img_hw = [None] * n, [None] * n
for i in pbar: # max 10k images
self.imgs[i], self.img_hw0[i], self.img_hw[i] = load_image(self, i) # img, hw_original, hw_resized
gb += self.imgs[i].nbytes
pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)

# Detect corrupted images https://medium.com/joelthchao/programmatically-detect-corrupted-image-8c1b2006c3d3
detect_corrupted_images = False
if detect_corrupted_images:
from skimage import io # conda install -c conda-forge scikit-image
for file in tqdm(self.img_files, desc='Detecting corrupted images'):
try:
_ = io.imread(file)
except:
print('Corrupted image detected: %s' % file)

def __len__(self):
return len(self.img_files)

# def __iter__(self):
# self.count = -1
# print('ran dataset iter')
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
# return self

def __getitem__(self, index):
if self.image_weights:
index = self.indices[index]

hyp = self.hyp
if self.mosaic:
# Load mosaic
img, labels = load_mosaic(self, index)
shapes = None

else:
# Load image
img, (h0, w0), (h, w) = load_image(self, index)

# Letterbox
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling

# Load labels
labels = []
x = self.labels[index]
if x.size > 0:
# Normalized xywh to pixel xyxy format
labels = x.copy()
labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width
labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height
labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0]
labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1]

if self.augment:
# Augment imagespace
if not self.mosaic:
img, labels = random_affine(img, labels,
degrees=hyp['degrees'],
translate=hyp['translate'],
scale=hyp['scale'],
shear=hyp['shear'])

# Augment colorspace
augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])

# Apply cutouts
# if random.random() < 0.9:
# labels = cutout(img, labels)

nL = len(labels) # number of labels
if nL:
# convert xyxy to xywh
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5])

# Normalize coordinates 0 - 1
labels[:, [2, 4]] /= img.shape[0] # height
labels[:, [1, 3]] /= img.shape[1] # width

if self.augment:
# random left-right flip
lr_flip = True
if lr_flip and random.random() < 0.5:
img = np.fliplr(img)
if nL:
labels[:, 1] = 1 - labels[:, 1]

# random up-down flip
ud_flip = False
if ud_flip and random.random() < 0.5:
img = np.flipud(img)
if nL:
labels[:, 2] = 1 - labels[:, 2]

labels_out = torch.zeros((nL, 6))
if nL:
labels_out[:, 1:] = torch.from_numpy(labels)

# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)

return torch.from_numpy(img), labels_out, self.img_files[index], shapes

@staticmethod
def collate_fn(batch):
img, label, path, shapes = zip(*batch) # transposed
for i, l in enumerate(label):
l[:, 0] = i # add target image index for build_targets()
return torch.stack(img, 0), torch.cat(label, 0), path, shapes


def load_image(self, index):
# loads 1 image from dataset, returns img, original hw, resized hw
img = self.imgs[index]
if img is None: # not cached
path = self.img_files[index]
img = cv2.imread(path) # BGR
assert img is not None, 'Image Not Found ' + path
h0, w0 = img.shape[:2] # orig hw
r = self.img_size / max(h0, w0) # resize image to img_size
if r != 1: # always resize down, only resize up if training with augmentation
interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
else:
return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized


def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
dtype = img.dtype # uint8

x = np.arange(0, 256, dtype=np.int16)
lut_hue = ((x * r[0]) % 180).astype(dtype)
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)

img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed

# Histogram equalization
# if random.random() < 0.2:
# for i in range(3):
# img[:, :, i] = cv2.equalizeHist(img[:, :, i])


def load_mosaic(self, index):
# loads images in a mosaic

labels4 = []
s = self.img_size
xc, yc = [int(random.uniform(s * 0.5, s * 1.5)) for _ in range(2)] # mosaic center x, y
indices = [index] + [random.randint(0, len(self.labels) - 1) for _ in range(3)] # 3 additional image indices
for i, index in enumerate(indices):
# Load image
img, _, (h, w) = load_image(self, index)

# place img in img4
if i == 0: # top left
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
elif i == 1: # top right
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
elif i == 2: # bottom left
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, max(xc, w), min(y2a - y1a, h)
elif i == 3: # bottom right
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)

img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
padw = x1a - x1b
padh = y1a - y1b

# Labels
x = self.labels[index]
labels = x.copy()
if x.size > 0: # Normalized xywh to pixel xyxy format
labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw
labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh
labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw
labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh
labels4.append(labels)

# Concat/clip labels
if len(labels4):
labels4 = np.concatenate(labels4, 0)
# np.clip(labels4[:, 1:] - s / 2, 0, s, out=labels4[:, 1:]) # use with center crop
np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) # use with random_affine

# Augment
# img4 = img4[s // 2: int(s * 1.5), s // 2:int(s * 1.5)] # center crop (WARNING, requires box pruning)
img4, labels4 = random_affine(img4, labels4,
degrees=self.hyp['degrees'],
translate=self.hyp['translate'],
scale=self.hyp['scale'],
shear=self.hyp['shear'],
border=-s // 2) # border to remove

return img4, labels4


def letterbox(img, new_shape=(416, 416), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
# Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
shape = img.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)

# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better test mAP)
r = min(r, 1.0)

# Compute padding
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if auto: # minimum rectangle
dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding
elif scaleFill: # stretch
dw, dh = 0.0, 0.0
new_unpad = new_shape
ratio = new_shape[0] / shape[1], new_shape[1] / shape[0] # width, height ratios

dw /= 2 # divide padding into 2 sides
dh /= 2

if shape[::-1] != new_unpad: # resize
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return img, ratio, (dw, dh)


def random_affine(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, border=0):
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
# https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4
# targets = [cls, xyxy]

height = img.shape[0] + border * 2
width = img.shape[1] + border * 2

# Rotation and Scale
R = np.eye(3)
a = random.uniform(-degrees, degrees)
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
s = random.uniform(1 - scale, 1 + scale)
# s = 2 ** random.uniform(-scale, scale)
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(img.shape[1] / 2, img.shape[0] / 2), scale=s)

# Translation
T = np.eye(3)
T[0, 2] = random.uniform(-translate, translate) * img.shape[0] + border # x translation (pixels)
T[1, 2] = random.uniform(-translate, translate) * img.shape[1] + border # y translation (pixels)

# Shear
S = np.eye(3)
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)

# Combined rotation matrix
M = S @ T @ R # ORDER IS IMPORTANT HERE!!
if (border != 0) or (M != np.eye(3)).any(): # image changed
img = cv2.warpAffine(img, M[:2], dsize=(width, height), flags=cv2.INTER_LINEAR, borderValue=(114, 114, 114))

# Transform label coordinates
n = len(targets)
if n:
# warp points
xy = np.ones((n * 4, 3))
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
xy = (xy @ M.T)[:, :2].reshape(n, 8)

# create new boxes
x = xy[:, [0, 2, 4, 6]]
y = xy[:, [1, 3, 5, 7]]
xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T

# # apply angle-based reduction of bounding boxes
# radians = a * math.pi / 180
# reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
# x = (xy[:, 2] + xy[:, 0]) / 2
# y = (xy[:, 3] + xy[:, 1]) / 2
# w = (xy[:, 2] - xy[:, 0]) * reduction
# h = (xy[:, 3] - xy[:, 1]) * reduction
# xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T

# reject warped points outside of image
xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
w = xy[:, 2] - xy[:, 0]
h = xy[:, 3] - xy[:, 1]
area = w * h
area0 = (targets[:, 3] - targets[:, 1]) * (targets[:, 4] - targets[:, 2])
ar = np.maximum(w / (h + 1e-16), h / (w + 1e-16)) # aspect ratio
i = (w > 4) & (h > 4) & (area / (area0 * s + 1e-16) > 0.2) & (ar < 10)

targets = targets[i]
targets[:, 1:5] = xy[i]

return img, targets


def cutout(image, labels):
# https://arxiv.org/abs/1708.04552
# https://github.com/hysts/pytorch_cutout/blob/master/dataloader.py
# https://towardsdatascience.com/when-conventional-wisdom-fails-revisiting-data-augmentation-for-self-driving-cars-4831998c5509
h, w = image.shape[:2]

def bbox_ioa(box1, box2):
# Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
box2 = box2.transpose()

# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]

# Intersection area
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)

# box2 area
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16

# Intersection over box2 area
return inter_area / box2_area

# create random masks
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
for s in scales:
mask_h = random.randint(1, int(h * s))
mask_w = random.randint(1, int(w * s))

# box
xmin = max(0, random.randint(0, w) - mask_w // 2)
ymin = max(0, random.randint(0, h) - mask_h // 2)
xmax = min(w, xmin + mask_w)
ymax = min(h, ymin + mask_h)

# apply random color mask
image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]

# return unobscured labels
if len(labels) and s > 0.03:
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
labels = labels[ioa < 0.60] # remove >60% obscured labels

return labels


def reduce_img_size(path='../data/sm4/images', img_size=1024): # from utils.datasets import *; reduce_img_size()
# creates a new ./images_reduced folder with reduced size images of maximum size img_size
path_new = path + '_reduced' # reduced images path
create_folder(path_new)
for f in tqdm(glob.glob('%s/*.*' % path)):
try:
img = cv2.imread(f)
h, w = img.shape[:2]
r = img_size / max(h, w) # size ratio
if r < 1.0:
img = cv2.resize(img, (int(w * r), int(h * r)), interpolation=cv2.INTER_AREA) # _LINEAR fastest
fnew = f.replace(path, path_new) # .replace(Path(f).suffix, '.jpg')
cv2.imwrite(fnew, img)
except:
print('WARNING: image failure %s' % f)


def convert_images2bmp(): # from utils.datasets import *; convert_images2bmp()
# Save images
formats = [x.lower() for x in img_formats] + [x.upper() for x in img_formats]
# for path in ['../coco/images/val2014', '../coco/images/train2014']:
for path in ['../data/sm4/images', '../data/sm4/background']:
create_folder(path + 'bmp')
for ext in formats: # ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.dng']
for f in tqdm(glob.glob('%s/*%s' % (path, ext)), desc='Converting %s' % ext):
cv2.imwrite(f.replace(ext.lower(), '.bmp').replace(path, path + 'bmp'), cv2.imread(f))

# Save labels
# for path in ['../coco/trainvalno5k.txt', '../coco/5k.txt']:
for file in ['../data/sm4/out_train.txt', '../data/sm4/out_test.txt']:
with open(file, 'r') as f:
lines = f.read()
# lines = f.read().replace('2014/', '2014bmp/') # coco
lines = lines.replace('/images', '/imagesbmp')
lines = lines.replace('/background', '/backgroundbmp')
for ext in formats:
lines = lines.replace(ext, '.bmp')
with open(file.replace('.txt', 'bmp.txt'), 'w') as f:
f.write(lines)


def recursive_dataset2bmp(dataset='../data/sm4_bmp'): # from utils.datasets import *; recursive_dataset2bmp()
# Converts dataset to bmp (for faster training)
formats = [x.lower() for x in img_formats] + [x.upper() for x in img_formats]
for a, b, files in os.walk(dataset):
for file in tqdm(files, desc=a):
p = a + '/' + file
s = Path(file).suffix
if s == '.txt': # replace text
with open(p, 'r') as f:
lines = f.read()
for f in formats:
lines = lines.replace(f, '.bmp')
with open(p, 'w') as f:
f.write(lines)
elif s in formats: # replace image
cv2.imwrite(p.replace(s, '.bmp'), cv2.imread(p))
if s != '.bmp':
os.system("rm '%s'" % p)


def imagelist2folder(path='data/coco_64img.txt'): # from utils.datasets import *; imagelist2folder()
# Copies all the images in a text file (list of images) into a folder
create_folder(path[:-4])
with open(path, 'r') as f:
for line in f.read().splitlines():
os.system('cp "%s" %s' % (line, path[:-4]))
print(line)


def create_folder(path='./new_folder'):
# Create folder
if os.path.exists(path):
shutil.rmtree(path) # delete output folder
os.makedirs(path) # make new output folder

+ 181
- 0
utils/gcp.sh View File

@@ -0,0 +1,181 @@
#!/usr/bin/env bash

# New VM
if [ ! -d ./coco ]
then
echo "COCO folder not found. Running startup script."
git clone https://github.com/ultralytics/yolov5
# git clone -b test --depth 1 https://github.com/ultralytics/yolov5 test # branch
# sudo apt-get install zip
# git clone https://github.com/NVIDIA/apex && cd apex && pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" . --user && cd .. && rm -rf apex
# sudo conda install -yc conda-forge scikit-image pycocotools
python3 -c "from yolov5.utils.google_utils import gdrive_download; gdrive_download('1rrL-Jbc68iHiGjXOYc8u9tKfFiOX21Tn','coco2017.zip')"
python3 -c "from yolov5.utils.google_utils import gdrive_download; gdrive_download('1Y6Kou6kEB0ZEMCCpJSKStCor4KAReE43','coco2017.zip')"
sudo docker pull ultralytics/coco:198

# Add 64GB swap
sudo fallocate -l 64G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
free -h # check memory

# sudo reboot now
fi
n=198 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --epochs 50 --batch 64 --weights '' --cfg models/yolov5s_csp2.yaml --bucket ult/coco --name $n --data data/coco.yaml


# Evolve coco
sudo -s
t=ultralytics/yolov3:evolve
# docker kill $(docker ps -a -q --filter ancestor=$t)
for i in 0 1 6 7
do
docker pull $t && docker run --gpus all -d --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t bash utils/evolve.sh $i
sleep 30
done


# kmean_anchors(path='../coco/train2017.txt', n=12, img_size=(256, 1024), thr=0.10, gen=10000)
# 0.10 iou_thr: 1.000 best possible recall, 6.15 anchors > thr
# n=12, img_size=(256, 1024), IoU_all=0.188/0.641-mean/best, IoU>thr=0.338-mean: 7,9, 13,17, 30,21, 18,38, 31,63, 54,38, 52,110, 90,69, 98,187, 164,116, 218,255, 448,414

# from yolov4l_10iou
# computed with utils.kmean_anchors(path='../coco/train2017.txt', n=12, img_size=(320, 1024), thr=0.10, gen=1000)
# Evolving anchors: 100%|█████████████████| 1000/1000 [39:57<00:00, 2.40s/it]
# 0.10 iou_thr: 0.998 best possible recall, 6.07 anchors > thr
# n=12, img_size=(320, 1024), IoU_all=0.187/0.635-mean/best, IoU>thr=0.339-mean: 9,13, 20,21, 21,50, 43,34, 44,89, 84,59, 76,164, 133,105, 216,176, 153,267, 312,331, 623,467

# from yolov4l_10iou_9anchors
# computed with utils.kmean_anchors(path='../coco/train2017.txt', n=9, img_size=(320, 1024), thr=0.10, gen=1000)
# Evolving anchors: 100%|█████████████████| 1000/1000 [31:26<00:00, 1.89s/it]
# 0.10 iou_thr: 0.998 best possible recall, 4.60 anchors > thr
# n=9, img_size=(320, 1024), IoU_all=0.190/0.604-mean/best, IoU>thr=0.342-mean: 9,13, 20,26, 29,58, 55,37, 57,115, 105,77, 133,165, 254,280, 508,450

# ar < 5
#Evolving anchors: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1000/1000 [14:56<00:00, 1.00it/s]
#0.10 iou_thr: 0.999 best possible recall, 4.63 anchors > thr
#n=9, img_size=(320, 1024), IoU_all=0.187/0.601-mean/best, IoU>thr=0.334-mean: 9,11, 15,35, 36,21, 34,61, 86,55, 66,145, 164,110, 185,262, 450,369

#Evolving anchors: 10%|████████████ | 1015/10000 [15:59<1:56:24, 1.29it/s]
#5.00 iou_thr: 1.000 best possible recall, 4.79 anchors > thr
#n=9, img_size=(320, 1024), IoU_all=9.193/1.535-mean/best, IoU>thr=2.745-mean: 8,8, 14,24, 41,21, 24,56, 64,57, 60,140, 154,102, 174,262, 443,340

#Evolving anchors: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10000/10000 [2:15:31<00:00, 1.25it/s]
#5.00 iou_thr: 1.000 best possible recall, 4.80 anchors > thr
#n=9, img_size=(320, 1024), IoU_all=9.106/1.531-mean/best, IoU>thr=2.744-mean: 8,8, 12,24, 33,19, 25,53, 64,48, 58,128, 145,93, 164,240, 419,349


Evolving anchors: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10000/10000 [21:39<00:00, 7.83it/s]
0.20 iou_thr: 0.992 best possible recall, 3.44 anchors > thr
n=9, img_size=(640, 640), IoU_all=0.199/0.614-mean/best, IoU>thr=0.421-mean: 9,11, 16,25, 38,25, 26,54, 70,50, 51,102, 113,109, 161,218, 366,343

Evolving anchors: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10000/10000 [16:34<00:00, 10.05it/s]
0.10 iou_thr: 0.999 best possible recall, 4.87 anchors > thr
n=9, img_size=(640, 640), IoU_all=0.200/0.614-mean/best, IoU>thr=0.342-mean: 10,12, 16,27, 37,25, 27,56, 69,51, 53,108, 116,107, 163,216, 364,343

- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32

# coco (small cancelled, large, medium, small, yolov3)
n=129 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 64 --weights '' --cfg models/yolov4.yaml --bucket ult/coco --name $n && sudo shutdown
n=130 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 32 --weights '' --cfg models/yolov4.yaml --bucket ult/coco --name $n && sudo shutdown
n=133 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 16 --weights '' --cfg models/yolov4.yaml --bucket ult/coco --name $n && sudo shutdown
n=134 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 64 --weights '' --cfg models/yolov4s.yaml --bucket ult/coco --name $n && sudo shutdown
n=135 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 32 --weights '' --cfg models/yolov3-spp.yaml --bucket ult/coco --name $n && sudo shutdown
n=136 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 16 --weights '' --cfg models/yolov3-spp.yaml --bucket ult/coco --name $n && sudo shutdown


n=138 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 320 640 --batch 24 --weights '' --cfg models/yolov3-spp.yaml --bucket ult/coco --name $n && sudo shutdown
n=139 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 320 640 --batch 24 --weights '' --cfg models/yolov3-spp.yaml --bucket ult/coco --name $n && sudo shutdown
n=140 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 320 640 --batch 24 --weights '' --cfg models/yolov3-spp.yaml --bucket ult/coco --name $n && sudo shutdown

n=141 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 64 --weights '' --cfg models/yolov5s.yaml --bucket ult/coco --name $n && sudo shutdown
n=142 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 320 640 --batch 64 --weights '' --cfg models/yolov5s.yaml --bucket ult/coco --name $n && sudo shutdown
n=143 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 320 640 --batch 64 --weights '' --cfg models/yolov5s.yaml --bucket ult/coco --name $n && sudo shutdown
n=144 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 320 640 --batch 64 --weights '' --cfg models/yolov5s.yaml --bucket ult/coco --name $n && sudo shutdown
n=145 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 320 640 --batch 12 --weights '' --cfg models/yolov5l.yaml --bucket ult/coco --name $n && sudo shutdown
n=146 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 320 640 --batch 64 --weights '' --cfg models/yolov5s.yaml --bucket ult/coco --name $n && sudo shutdown

n=147 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 320 640 --batch 64 --weights '' --cfg models/yolov5s.yaml --bucket ult/coco --name $n && sudo shutdown
n=148 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 320 640 --batch 64 --weights '' --cfg models/yolov5s.yaml --bucket ult/coco --name $n && sudo shutdown
n=149 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 320 832 --batch 32 --weights '' --cfg models/yolov5s.yaml --bucket ult/coco --name $n && sudo shutdown

n=150 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 320 640 --batch 32 --weights '' --cfg models/yolov5s.yaml --bucket ult/coco --name $n && sudo shutdown
n=151 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 320 640 --batch 32 --weights '' --cfg models/yolov5s.yaml --bucket ult/coco --name $n && sudo shutdown

n=152 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 64 --weights '' --cfg models/yolov5s.yaml --bucket ult/coco --name $n && sudo shutdown
n=154 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 32 --weights '' --cfg models/yolov5s_exp.yaml --bucket ult/coco --name $n && sudo shutdown

n=153 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 64 --weights '' --cfg models/yolov5s_focus1.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown
n=155 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 64 --weights '' --cfg models/yolov5s_focus2.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown
n=156 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 64 --weights '' --cfg models/yolov5s_exp_focus0.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown

n=157 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 64 --weights '' --cfg models/yolov5s_focus3.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown
n=158 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 64 --weights '' --cfg models/yolov5s_focus4.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown
n=159 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 64 --weights '' --cfg models/yolov5s_focus5.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown

n=160 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 64 --weights '' --cfg models/yolov5_final.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown
n=161 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 64 --weights '' --cfg models/yolov5_final.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown

n=162 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 64 --weights '' --cfg models/yolov5_final.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown
n=163 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 64 --weights '' --cfg models/yolov5_final.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown

n=164 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 64 --weights '' --cfg models/yolov5_final.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown
n=165 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 64 --weights '' --cfg models/yolov5s_origami.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown
n=166 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 64 --weights '' --cfg models/yolov5s_k3.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown
n=167 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 64 --weights '' --cfg models/yolov5s_plus.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown
n=168 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 64 --weights '' --cfg models/yolov5s.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown

n=169 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 64 --weights '' --cfg models/yolov5s.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown

n=170 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 24 --weights '' --cfg models/yolov3-spp.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown

n=171 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 64 --weights '' --cfg models/yolov5s_k3_spp5913.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown
n=172 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 64 --weights '' --cfg models/yolov5s.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown

n=173 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 24 --weights '' --cfg models/yolov3-spp.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown
n=174 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 24 --weights '' --cfg models/yolov3-spp.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown


n=178 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 96 --weights '' --cfg models/yolov5s.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown
n=179 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 48 --weights '' --cfg models/yolov5m.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown
n=180 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 28 --weights '' --cfg models/yolov5l.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown
n=181 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 16 --weights '' --cfg models/yolov5x.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown
n=182 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 24 --weights '' --cfg models/yolov3-spp.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown
n=183 && t=ultralytics/coco:v178 && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 64 --weights '' --cfg models/yolov5s.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown

n=184 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 64 --weights '' --cfg models/yolov5s_csp.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown
n=185 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 64 --weights '' --cfg models/yolov5s_csp.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown


n=186 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --epochs 50 --batch 64 --weights '' --cfg models/yolov5s.yaml --bucket ult/coco --name $n --data data/coco.yaml
n=187 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --epochs 50 --batch 64 --weights '' --cfg models/yolov5s_csp.yaml --bucket ult/coco --name $n --data data/coco.yaml
n=188 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --epochs 50 --batch 64 --weights '' --cfg models/yolov5s_csp.yaml --bucket ult/coco --name $n --data data/coco.yaml

n=189 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --epochs 50 --batch 64 --weights '' --cfg models/yolov5s_focus.yaml --bucket ult/coco --name $n --data data/coco.yaml
n=190 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --epochs 50 --batch 64 --weights '' --cfg models/yolov5s.yaml --bucket ult/coco --name $n --data data/coco.yaml
n=191 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --epochs 50 --batch 64 --weights '' --cfg models/yolov5s.yaml --bucket ult/coco --name $n --data data/coco.yaml

n=192 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --epochs 50 --batch 64 --weights '' --cfg models/yolov5s.yaml --bucket ult/coco --name $n --data data/coco.yaml
n=193 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --epochs 50 --batch 64 --weights '' --cfg models/yolov5s.yaml --bucket ult/coco --name $n --data data/coco.yaml

n=194 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --epochs 50 --batch 64 --weights '' --cfg models/yolov5s_csp.yaml --bucket ult/coco --name $n --data data/coco.yaml
n=195 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --epochs 50 --batch 64 --weights '' --cfg models/yolov5s_csp.yaml --bucket ult/coco --name $n --data data/coco.yaml

n=196 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --epochs 50 --batch 64 --weights '' --cfg models/yolov5s_csp.yaml --bucket ult/coco --name $n --data data/coco.yaml
n=197 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --epochs 50 --batch 64 --weights '' --cfg models/yolov5s_csp1.yaml --bucket ult/coco --name $n --data data/coco.yaml
n=198 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --epochs 50 --batch 64 --weights '' --cfg models/yolov5s_csp2.yaml --bucket ult/coco --name $n --data data/coco.yaml
n=199 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --epochs 50 --batch 64 --weights '' --cfg models/yolov5s_csp2.yaml --bucket ult/coco --name $n --data data/coco.yaml



n=201 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 48 --weights '' --cfg models/yolov5m_csp.yaml --bucket ult/coco --name $n --data data/coco.yaml
n=204 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 24 --weights '' --cfg models/yolov3-spp.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown

n=206 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 24 --weights '' --cfg models/yolov3-spp_csp.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown
n=207 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --img 640 640 --batch 24 --weights '' --cfg models/yolov3-spp_csp.yaml --bucket ult/coco --name $n --data data/coco.yaml && sudo shutdown


n=205 && t=ultralytics/coco:v$n && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t bash

+ 94
- 0
utils/google_utils.py View File

@@ -0,0 +1,94 @@
# This file contains google utils: https://cloud.google.com/storage/docs/reference/libraries
# pip install --upgrade google-cloud-storage
# from google.cloud import storage

import os
import time
from pathlib import Path


def attempt_download(weights):
# Attempt to download pretrained weights if not found locally
weights = weights.strip()
msg = weights + ' missing, try downloading from https://drive.google.com/open?id=1LezFG5g3BCW6iYaV89B2i64cqEUZD7e0'

r = 1
if len(weights) > 0 and not os.path.isfile(weights):
d = {'yolov3-spp.pt': '1mM67oNw4fZoIOL1c8M3hHmj66d8e-ni_', # yolov3-spp.yaml
'yolov5s.pt': '1R5T6rIyy3lLwgFXNms8whc-387H0tMQO', # yolov5s.yaml
'yolov5m.pt': '1vobuEExpWQVpXExsJ2w-Mbf3HJjWkQJr', # yolov5m.yaml
'yolov5l.pt': '1hrlqD1Wdei7UT4OgT785BEk1JwnSvNEV', # yolov5l.yaml
'yolov5x.pt': '1mM8aZJlWTxOg7BZJvNUMrTnA2AbeCVzS', # yolov5x.yaml
}

file = Path(weights).name
if file in d:
r = gdrive_download(id=d[file], name=weights)

# Error check
if not (r == 0 and os.path.exists(weights) and os.path.getsize(weights) > 1E6): # weights exist and > 1MB
os.system('rm ' + weights) # remove partial downloads
raise Exception(msg)


def gdrive_download(id='1HaXkef9z6y5l4vUnCYgdmEAj61c6bfWO', name='coco.zip'):
# https://gist.github.com/tanaikech/f0f2d122e05bf5f971611258c22c110f
# Downloads a file from Google Drive, accepting presented query
# from utils.google_utils import *; gdrive_download()
t = time.time()

print('Downloading https://drive.google.com/uc?export=download&id=%s as %s... ' % (id, name), end='')
os.remove(name) if os.path.exists(name) else None # remove existing
os.remove('cookie') if os.path.exists('cookie') else None

# Attempt file download
os.system("curl -c ./cookie -s -L \"https://drive.google.com/uc?export=download&id=%s\" > /dev/null" % id)
if os.path.exists('cookie'): # large file
s = "curl -Lb ./cookie \"https://drive.google.com/uc?export=download&confirm=`awk '/download/ {print $NF}' ./cookie`&id=%s\" -o %s" % (
id, name)
else: # small file
s = "curl -s -L -o %s 'https://drive.google.com/uc?export=download&id=%s'" % (name, id)
r = os.system(s) # execute, capture return values
os.remove('cookie') if os.path.exists('cookie') else None

# Error check
if r != 0:
os.remove(name) if os.path.exists(name) else None # remove partial
print('Download error ') # raise Exception('Download error')
return r

# Unzip if archive
if name.endswith('.zip'):
print('unzipping... ', end='')
os.system('unzip -q %s' % name) # unzip
os.remove(name) # remove zip to free space

print('Done (%.1fs)' % (time.time() - t))
return r

# def upload_blob(bucket_name, source_file_name, destination_blob_name):
# # Uploads a file to a bucket
# # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
#
# storage_client = storage.Client()
# bucket = storage_client.get_bucket(bucket_name)
# blob = bucket.blob(destination_blob_name)
#
# blob.upload_from_filename(source_file_name)
#
# print('File {} uploaded to {}.'.format(
# source_file_name,
# destination_blob_name))
#
#
# def download_blob(bucket_name, source_blob_name, destination_file_name):
# # Uploads a blob from a bucket
# storage_client = storage.Client()
# bucket = storage_client.get_bucket(bucket_name)
# blob = bucket.blob(source_blob_name)
#
# blob.download_to_filename(destination_file_name)
#
# print('Blob {} downloaded to {}.'.format(
# source_blob_name,
# destination_file_name))

+ 194
- 0
utils/torch_utils.py View File

@@ -0,0 +1,194 @@
import math
import os
import time
from copy import deepcopy

import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F


def init_seeds(seed=0):
torch.manual_seed(seed)

# Reduce randomness (may be slower on Tesla GPUs) # https://pytorch.org/docs/stable/notes/randomness.html
if seed == 0:
cudnn.deterministic = False
cudnn.benchmark = True


def select_device(device='', apex=False, batch_size=None):
# device = 'cpu' or '0' or '0,1,2,3'
cpu_request = device.lower() == 'cpu'
if device and not cpu_request: # if device requested other than 'cpu'
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
assert torch.cuda.is_available(), 'CUDA unavailable, invalid device %s requested' % device # check availablity

cuda = False if cpu_request else torch.cuda.is_available()
if cuda:
c = 1024 ** 2 # bytes to MB
ng = torch.cuda.device_count()
if ng > 1 and batch_size: # check that batch_size is compatible with device_count
assert batch_size % ng == 0, 'batch-size %g not multiple of GPU count %g' % (batch_size, ng)
x = [torch.cuda.get_device_properties(i) for i in range(ng)]
s = 'Using CUDA ' + ('Apex ' if apex else '') # apex for mixed precision https://github.com/NVIDIA/apex
for i in range(0, ng):
if i == 1:
s = ' ' * len(s)
print("%sdevice%g _CudaDeviceProperties(name='%s', total_memory=%dMB)" %
(s, i, x[i].name, x[i].total_memory / c))
else:
print('Using CPU')

print('') # skip a line
return torch.device('cuda:0' if cuda else 'cpu')


def time_synchronized():
torch.cuda.synchronize() if torch.cuda.is_available() else None
return time.time()


def initialize_weights(model):
for m in model.modules():
t = type(m)
if t is nn.Conv2d:
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif t is nn.BatchNorm2d:
m.eps = 1e-4
m.momentum = 0.03
elif t in [nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
m.inplace = True


def find_modules(model, mclass=nn.Conv2d):
# finds layer indices matching module class 'mclass'
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]


def fuse_conv_and_bn(conv, bn):
# https://tehnokv.com/posts/fusing-batchnorm-and-conv/
with torch.no_grad():
# init
fusedconv = torch.nn.Conv2d(conv.in_channels,
conv.out_channels,
kernel_size=conv.kernel_size,
stride=conv.stride,
padding=conv.padding,
bias=True)

# prepare filters
w_conv = conv.weight.clone().view(conv.out_channels, -1)
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))

# prepare spatial bias
if conv.bias is not None:
b_conv = conv.bias
else:
b_conv = torch.zeros(conv.weight.size(0))
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)

return fusedconv


def model_info(model, verbose=False):
# Plots a line-by-line description of a PyTorch model
n_p = sum(x.numel() for x in model.parameters()) # number parameters
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
if verbose:
print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
for i, (name, p) in enumerate(model.named_parameters()):
name = name.replace('module_list.', '')
print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))

try: # FLOPS
from thop import profile
macs, _ = profile(model, inputs=(torch.zeros(1, 3, 480, 640),), verbose=False)
fs = ', %.1f GFLOPS' % (macs / 1E9 * 2)
except:
fs = ''

print('Model Summary: %g layers, %g parameters, %g gradients%s' % (len(list(model.parameters())), n_p, n_g, fs))


def load_classifier(name='resnet101', n=2):
# Loads a pretrained model reshaped to n-class output
import pretrainedmodels # https://github.com/Cadene/pretrained-models.pytorch#torchvision
model = pretrainedmodels.__dict__[name](num_classes=1000, pretrained='imagenet')

# Display model properties
for x in ['model.input_size', 'model.input_space', 'model.input_range', 'model.mean', 'model.std']:
print(x + ' =', eval(x))

# Reshape output to n classes
filters = model.last_linear.weight.shape[1]
model.last_linear.bias = torch.nn.Parameter(torch.zeros(n))
model.last_linear.weight = torch.nn.Parameter(torch.zeros(n, filters))
model.last_linear.out_features = n
return model


def scale_img(img, ratio=1.0, same_shape=True): # img(16,3,256,416), r=ratio
# scales img(bs,3,y,x) by ratio
h, w = img.shape[2:]
s = (int(h * ratio), int(w * ratio)) # new size
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
if not same_shape: # pad/crop img
gs = 64 # (pixels) grid size
h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean


class ModelEMA:
""" Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
Keep a moving average of everything in the model state_dict (parameters and buffers).
This is intended to allow functionality like
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
A smoothed version of the weights is necessary for some training schemes to perform well.
E.g. Google's hyper-params for training MNASNet, MobileNet-V3, EfficientNet, etc that use
RMSprop with a short 2.4-3 epoch decay period and slow LR decay rate of .96-.99 requires EMA
smoothing of weights to match results. Pay attention to the decay constant you are using
relative to your update count per epoch.
To keep EMA from using GPU resources, set device='cpu'. This will save a bit of memory but
disable validation of the EMA weights. Validation will have to be done manually in a separate
process, or after the training stops converging.
This class is sensitive where it is initialized in the sequence of model init,
GPU assignment and distributed training wrappers.
I've tested with the sequence in my own train.py for torch.DataParallel, apex.DDP, and single-GPU.
"""

def __init__(self, model, decay=0.9999, device=''):
# make a copy of the model for accumulating moving average of weights
self.ema = deepcopy(model)
self.ema.eval()
self.updates = 0 # number of EMA updates
self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
self.device = device # perform ema on different device from model if set
if device:
self.ema.to(device=device)
for p in self.ema.parameters():
p.requires_grad_(False)

def update(self, model):
self.updates += 1
d = self.decay(self.updates)
with torch.no_grad():
if type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel):
msd, esd = model.module.state_dict(), self.ema.module.state_dict()
else:
msd, esd = model.state_dict(), self.ema.state_dict()

for k, v in esd.items():
if v.dtype.is_floating_point:
v *= d
v += (1. - d) * msd[k].detach()

def update_attr(self, model):
# Assign attributes (which may change during training)
for k in model.__dict__.keys():
if not k.startswith('_'):
setattr(self.ema, k, getattr(model, k))

+ 1085
- 0
utils/utils.py
File diff suppressed because it is too large
View File


+ 7
- 0
weights/download_weights.sh View File

@@ -0,0 +1,7 @@
#!/bin/bash
# Download common models

python3 -c "from models import *;
attempt_download('weights/yolov5s.pt');
attempt_download('weights/yolov5m.pt');
attempt_download('weights/yolov5l.pt')"

Loading…
Cancel
Save