|
|
@@ -709,6 +709,7 @@ def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=Non |
|
|
|
list of detections, on (n,6) tensor per image [xyxy, conf, cls] |
|
|
|
""" |
|
|
|
|
|
|
|
bs = prediction.shape[0] # batch size |
|
|
|
nc = prediction.shape[2] - 5 # number of classes |
|
|
|
xc = prediction[..., 4] > conf_thres # candidates |
|
|
|
|
|
|
@@ -719,13 +720,13 @@ def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=Non |
|
|
|
# Settings |
|
|
|
min_wh, max_wh = 2, 7680 # (pixels) minimum and maximum box width and height |
|
|
|
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms() |
|
|
|
time_limit = 10.0 # seconds to quit after |
|
|
|
time_limit = 0.030 * bs # seconds to quit after |
|
|
|
redundant = True # require redundant detections |
|
|
|
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img) |
|
|
|
merge = False # use merge-NMS |
|
|
|
|
|
|
|
t = time.time() |
|
|
|
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0] |
|
|
|
t, warn_time = time.time(), True |
|
|
|
output = [torch.zeros((0, 6), device=prediction.device)] * bs |
|
|
|
for xi, x in enumerate(prediction): # image index, image inference |
|
|
|
# Apply constraints |
|
|
|
x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height |
|
|
@@ -789,7 +790,9 @@ def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=Non |
|
|
|
|
|
|
|
output[xi] = x[i] |
|
|
|
if (time.time() - t) > time_limit: |
|
|
|
LOGGER.warning(f'WARNING: NMS time limit {time_limit}s exceeded') |
|
|
|
if warn_time: |
|
|
|
LOGGER.warning(f'WARNING: NMS time limit {time_limit:3f}s exceeded') |
|
|
|
warn_time = False |
|
|
|
break # time limit exceeded |
|
|
|
|
|
|
|
return output |