|
|
|
|
|
|
|
|
|
|
|
|
|
|
img = Image.open(io.BytesIO(image_bytes)) |
|
|
img = Image.open(io.BytesIO(image_bytes)) |
|
|
|
|
|
|
|
|
results = model(img, size=640) |
|
|
|
|
|
data = results.pandas().xyxy[0].to_json(orient="records") |
|
|
|
|
|
return data |
|
|
|
|
|
|
|
|
results = model(img, size=640) # reduce size=320 for faster inference |
|
|
|
|
|
return results.pandas().xyxy[0].to_json(orient="records") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
if __name__ == "__main__": |
|
|
parser = argparse.ArgumentParser(description="Flask api exposing yolov5 model") |
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description="Flask API exposing YOLOv5 model") |
|
|
parser.add_argument("--port", default=5000, type=int, help="port number") |
|
|
parser.add_argument("--port", default=5000, type=int, help="port number") |
|
|
args = parser.parse_args() |
|
|
args = parser.parse_args() |
|
|
|
|
|
|
|
|
model = torch.hub.load("ultralytics/yolov5", "yolov5s", force_reload=True).autoshape() # force_reload to recache |
|
|
|
|
|
|
|
|
model = torch.hub.load("ultralytics/yolov5", "yolov5s", force_reload=True) # force_reload to recache |
|
|
app.run(host="0.0.0.0", port=args.port) # debug=True causes Restarting with stat |
|
|
app.run(host="0.0.0.0", port=args.port) # debug=True causes Restarting with stat |