|
|
@@ -1,6 +1,6 @@ |
|
|
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license |
|
|
|
""" |
|
|
|
Auto-anchor utils |
|
|
|
AutoAnchor utils |
|
|
|
""" |
|
|
|
|
|
|
|
import random |
|
|
@@ -81,6 +81,7 @@ def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen |
|
|
|
""" |
|
|
|
from scipy.cluster.vq import kmeans |
|
|
|
|
|
|
|
npr = np.random |
|
|
|
thr = 1 / thr |
|
|
|
|
|
|
|
def metric(k, wh): # compute metrics |
|
|
@@ -121,14 +122,15 @@ def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen |
|
|
|
if i: |
|
|
|
LOGGER.info(f'{PREFIX}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.') |
|
|
|
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels |
|
|
|
# wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1 |
|
|
|
# wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1 |
|
|
|
|
|
|
|
# Kmeans calculation |
|
|
|
LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...') |
|
|
|
s = wh.std(0) # sigmas for whitening |
|
|
|
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance |
|
|
|
assert len(k) == n, f'{PREFIX}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}' |
|
|
|
k *= s |
|
|
|
k = kmeans(wh / s, n, iter=30)[0] * s # points |
|
|
|
if len(k) != n: # kmeans may return fewer points than requested if wh is insufficient or too similar |
|
|
|
LOGGER.warning(f'{PREFIX}WARNING: scipy.cluster.vq.kmeans returned only {len(k)} of {n} requested points') |
|
|
|
k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size # random init |
|
|
|
wh = torch.tensor(wh, dtype=torch.float32) # filtered |
|
|
|
wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered |
|
|
|
k = print_results(k, verbose=False) |
|
|
@@ -146,7 +148,6 @@ def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen |
|
|
|
# fig.savefig('wh.png', dpi=200) |
|
|
|
|
|
|
|
# Evolve |
|
|
|
npr = np.random |
|
|
|
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma |
|
|
|
pbar = tqdm(range(gen), desc=f'{PREFIX}Evolving anchors with Genetic Algorithm:') # progress bar |
|
|
|
for _ in pbar: |