|
|
@@ -244,7 +244,7 @@ class Detections: |
|
|
|
def display(self, pprint=False, show=False, save=False, render=False): |
|
|
|
colors = color_list() |
|
|
|
for i, (img, pred) in enumerate(zip(self.imgs, self.pred)): |
|
|
|
str = f'Image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} ' |
|
|
|
str = f'image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} ' |
|
|
|
if pred is not None: |
|
|
|
for c in pred[:, -1].unique(): |
|
|
|
n = (pred[:, -1] == c).sum() # detections per class |
|
|
@@ -255,13 +255,13 @@ class Detections: |
|
|
|
# str += '%s %.2f, ' % (names[int(cls)], conf) # label |
|
|
|
ImageDraw.Draw(img).rectangle(box, width=4, outline=colors[int(cls) % 10]) # plot |
|
|
|
if pprint: |
|
|
|
print(str) |
|
|
|
print(str.rstrip(', ')) |
|
|
|
if show: |
|
|
|
img.show(f'Image {i}') # show |
|
|
|
img.show(f'image {i}') # show |
|
|
|
if save: |
|
|
|
f = f'results{i}.jpg' |
|
|
|
str += f"saved to '{f}'" |
|
|
|
img.save(f) # save |
|
|
|
print(f"{'Saving' * (i == 0)} {f},", end='' if i < self.n - 1 else ' done.\n') |
|
|
|
if render: |
|
|
|
self.imgs[i] = np.asarray(img) |
|
|
|
|