|
|
@@ -439,7 +439,7 @@ class BCEBlurWithLogitsLoss(nn.Module): |
|
|
|
|
|
|
|
def compute_loss(p, targets, model): # predictions, targets, model |
|
|
|
device = targets.device |
|
|
|
lcls, lbox, lobj = torch.zeros(3, 1, device=device) |
|
|
|
lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device) |
|
|
|
tcls, tbox, indices, anchors = build_targets(p, targets, model) # targets |
|
|
|
h = model.hyp # hyperparameters |
|
|
|
|
|
|
@@ -482,13 +482,13 @@ def compute_loss(p, targets, model): # predictions, targets, model |
|
|
|
if model.nc > 1: # cls loss (only if multiple classes) |
|
|
|
t = torch.full_like(ps[:, 5:], cn, device=device) # targets |
|
|
|
t[range(n), tcls[i]] = cp |
|
|
|
lcls = lcls + BCEcls(ps[:, 5:], t) # BCE |
|
|
|
lcls += BCEcls(ps[:, 5:], t) # BCE |
|
|
|
|
|
|
|
# Append targets to text file |
|
|
|
# with open('targets.txt', 'a') as file: |
|
|
|
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] |
|
|
|
|
|
|
|
lobj = lobj + BCEobj(pi[..., 4], tobj) * balance[i] # obj loss |
|
|
|
lobj += BCEobj(pi[..., 4], tobj) * balance[i] # obj loss |
|
|
|
|
|
|
|
s = 3 / np # output count scaling |
|
|
|
lbox *= h['giou'] * s |