Browse Source

compute_loss() leaf variable update

5.0
Glenn Jocher 4 years ago
parent
commit
305c6a028a
1 changed files with 3 additions and 3 deletions
  1. +3
    -3
      utils/utils.py

+ 3
- 3
utils/utils.py View File

@@ -439,7 +439,7 @@ class BCEBlurWithLogitsLoss(nn.Module):

def compute_loss(p, targets, model): # predictions, targets, model
device = targets.device
lcls, lbox, lobj = torch.zeros(3, 1, device=device)
lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
tcls, tbox, indices, anchors = build_targets(p, targets, model) # targets
h = model.hyp # hyperparameters

@@ -482,13 +482,13 @@ def compute_loss(p, targets, model): # predictions, targets, model
if model.nc > 1: # cls loss (only if multiple classes)
t = torch.full_like(ps[:, 5:], cn, device=device) # targets
t[range(n), tcls[i]] = cp
lcls = lcls + BCEcls(ps[:, 5:], t) # BCE
lcls += BCEcls(ps[:, 5:], t) # BCE

# Append targets to text file
# with open('targets.txt', 'a') as file:
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]

lobj = lobj + BCEobj(pi[..., 4], tobj) * balance[i] # obj loss
lobj += BCEobj(pi[..., 4], tobj) * balance[i] # obj loss

s = 3 / np # output count scaling
lbox *= h['giou'] * s

Loading…
Cancel
Save