瀏覽代碼

Update val.py `speed` and `study` tasks (#5608)

Accepts all arguments now by default resolving https://github.com/ultralytics/yolov5/issues/5600
modifyDataloader
Glenn Jocher GitHub 3 年之前
父節點
當前提交
30bc089cbb
沒有發現已知的金鑰在資料庫的簽署中 GPG 金鑰 ID: 4AEE18F83AFDEB23
共有 1 個檔案被更改,包括 21 行新增20 行删除
  1. +21
    -20
      val.py

+ 21
- 20
val.py 查看文件

@@ -339,26 +339,27 @@ def main(opt):
LOGGER.info(f'WARNING: confidence threshold {opt.conf_thres} >> 0.001 will produce invalid mAP values.')
run(**vars(opt))

elif opt.task == 'speed': # speed benchmarks
# python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
run(opt.data, weights=w, batch_size=opt.batch_size, imgsz=opt.imgsz, conf_thres=.25, iou_thres=.45,
device=opt.device, save_json=False, plots=False)

elif opt.task == 'study': # run over a range of settings and save/plot
# python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
y = [] # y axis
for i in x: # img-size
LOGGER.info(f'\nRunning {f} point {i}...')
r, _, t = run(opt.data, weights=w, batch_size=opt.batch_size, imgsz=i, conf_thres=opt.conf_thres,
iou_thres=opt.iou_thres, device=opt.device, save_json=opt.save_json, plots=False)
y.append(r + t) # results and times
np.savetxt(f, y, fmt='%10.4g') # save
os.system('zip -r study.zip study_*.txt')
plot_val_study(x=x) # plot
else:
weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
opt.half = True # FP16 for fastest results
if opt.task == 'speed': # speed benchmarks
# python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
for opt.weights in weights:
run(**vars(opt), plots=False)

elif opt.task == 'study': # speed vs mAP benchmarks
# python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
for opt.weights in weights:
f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
for opt.imgsz in x: # img-size
LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
r, _, t = run(**vars(opt), plots=False)
y.append(r + t) # results and times
np.savetxt(f, y, fmt='%10.4g') # save
os.system('zip -r study.zip study_*.txt')
plot_val_study(x=x) # plot


if __name__ == "__main__":

Loading…
取消
儲存