|
|
@@ -42,17 +42,6 @@ hyp = {'lr0': 0.01, # initial learning rate (SGD=1E-2, Adam=1E-3) |
|
|
|
# Don't need to be printing every time |
|
|
|
#print(hyp) |
|
|
|
|
|
|
|
# Overwrite hyp with hyp*.txt (optional) |
|
|
|
if f: |
|
|
|
print('Using %s' % f[0]) |
|
|
|
for k, v in zip(hyp.keys(), np.loadtxt(f[0])): |
|
|
|
hyp[k] = v |
|
|
|
|
|
|
|
# Print focal loss if gamma > 0 |
|
|
|
if hyp['fl_gamma']: |
|
|
|
print('Using FocalLoss(gamma=%g)' % hyp['fl_gamma']) |
|
|
|
|
|
|
|
|
|
|
|
def train(hyp): |
|
|
|
#write all results to the tb log_dir, so all data from one run is together |
|
|
|
log_dir = tb_writer.log_dir |
|
|
@@ -410,7 +399,7 @@ if __name__ == '__main__': |
|
|
|
print(f'WARNING: No run provided to resume from. Resuming from most recent run found at {last}') |
|
|
|
else: |
|
|
|
last = '' |
|
|
|
|
|
|
|
|
|
|
|
# if resuming, check for hyp file |
|
|
|
if last: |
|
|
|
last_hyp = last.replace('last.pt', 'hyp.yaml') |
|
|
@@ -430,7 +419,16 @@ if __name__ == '__main__': |
|
|
|
# Train |
|
|
|
if not opt.evolve: |
|
|
|
tb_writer = SummaryWriter(comment=opt.name) |
|
|
|
|
|
|
|
#updates hyp defaults from hyp.yaml |
|
|
|
if opt.hyp: hyp.update(opt.hyp) |
|
|
|
|
|
|
|
# Print focal loss if gamma > 0 |
|
|
|
if hyp['fl_gamma']: |
|
|
|
print('Using FocalLoss(gamma=%g)' % hyp['fl_gamma']) |
|
|
|
print(f'Beginning training with {hyp}\n\n') |
|
|
|
print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/') |
|
|
|
|
|
|
|
train(hyp) |
|
|
|
|
|
|
|
# Evolve hyperparameters (optional) |