* Update p2-p7 `models/hub` variants * Update common.py * AutoAnchor camelcase correctionsmodifyDataloader
@@ -306,7 +306,7 @@ class DetectMultiBackend(nn.Module): | |||
if pt: # PyTorch | |||
model = attempt_load(weights if isinstance(weights, list) else w, map_location=device) | |||
stride = int(model.stride.max()) # model stride | |||
stride = max(int(model.stride.max()), 32) # model stride | |||
names = model.module.names if hasattr(model, 'module') else model.names # get class names | |||
self.model = model # explicitly assign for to(), cpu(), cuda(), half() | |||
elif jit: # TorchScript |
@@ -4,7 +4,7 @@ | |||
nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
anchors: 3 # auto-anchor evolves 3 anchors per P output layer | |||
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer | |||
# YOLOv5 v6.0 backbone | |||
backbone: | |||
@@ -21,7 +21,7 @@ backbone: | |||
[-1, 1, SPPF, [1024, 5]], # 9 | |||
] | |||
# YOLOv5 v6.0 head | |||
# YOLOv5 v6.0 head with (P2, P3, P4, P5) outputs | |||
head: | |||
[[-1, 1, Conv, [512, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], |
@@ -0,0 +1,41 @@ | |||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license | |||
# Parameters | |||
nc: 80 # number of classes | |||
depth_multiple: 0.33 # model depth multiple | |||
width_multiple: 0.50 # layer channel multiple | |||
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer | |||
# YOLOv5 v6.0 backbone | |||
backbone: | |||
# [from, number, module, args] | |||
[ [ -1, 1, Conv, [ 64, 6, 2, 2 ] ], # 0-P1/2 | |||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 | |||
[ -1, 3, C3, [ 128 ] ], | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 | |||
[ -1, 6, C3, [ 256 ] ], | |||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 | |||
[ -1, 9, C3, [ 512 ] ], | |||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32 | |||
[ -1, 3, C3, [ 1024 ] ], | |||
[ -1, 1, SPPF, [ 1024, 5 ] ], # 9 | |||
] | |||
# YOLOv5 v6.0 head with (P3, P4) outputs | |||
head: | |||
[ [ -1, 1, Conv, [ 512, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 13 | |||
[ -1, 1, Conv, [ 256, 1, 1 ] ], | |||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], | |||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 | |||
[ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small) | |||
[ -1, 1, Conv, [ 256, 3, 2 ] ], | |||
[ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4 | |||
[ -1, 3, C3, [ 512, False ] ], # 20 (P4/16-medium) | |||
[ [ 17, 20 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4) | |||
] |
@@ -4,7 +4,7 @@ | |||
nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
anchors: 3 # auto-anchor 3 anchors per P output layer | |||
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer | |||
# YOLOv5 v6.0 backbone | |||
backbone: | |||
@@ -23,7 +23,7 @@ backbone: | |||
[-1, 1, SPPF, [1024, 5]], # 11 | |||
] | |||
# YOLOv5 v6.0 head | |||
# YOLOv5 v6.0 head with (P3, P4, P5, P6) outputs | |||
head: | |||
[[-1, 1, Conv, [768, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], |
@@ -4,7 +4,7 @@ | |||
nc: 80 # number of classes | |||
depth_multiple: 1.0 # model depth multiple | |||
width_multiple: 1.0 # layer channel multiple | |||
anchors: 3 # auto-anchor 3 anchors per P output layer | |||
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer | |||
# YOLOv5 v6.0 backbone | |||
backbone: | |||
@@ -25,7 +25,7 @@ backbone: | |||
[-1, 1, SPPF, [1280, 5]], # 13 | |||
] | |||
# YOLOv5 head | |||
# YOLOv5 v6.0 head with (P3, P4, P5, P6, P7) outputs | |||
head: | |||
[[-1, 1, Conv, [1024, 1, 1]], | |||
[-1, 1, nn.Upsample, [None, 2, 'nearest']], |
@@ -461,7 +461,7 @@ def parse_opt(known=False): | |||
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') | |||
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') | |||
parser.add_argument('--noval', action='store_true', help='only validate final epoch') | |||
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check') | |||
parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor') | |||
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations') | |||
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') | |||
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"') |
@@ -777,7 +777,7 @@ | |||
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:01<00:00, 121.58it/s]\n", | |||
"Plotting labels... \n", | |||
"\n", | |||
"\u001b[34m\u001b[1mautoanchor: \u001b[0mAnalyzing anchors... anchors/target = 4.27, Best Possible Recall (BPR) = 0.9935\n", | |||
"\u001b[34m\u001b[1mAutoAnchor: \u001b[0mAnalyzing anchors... anchors/target = 4.27, Best Possible Recall (BPR) = 0.9935\n", | |||
"Image sizes 640 train, 640 val\n", | |||
"Using 2 dataloader workers\n", | |||
"Logging results to \u001b[1mruns/train/exp\u001b[0m\n", |