|
|
@@ -904,18 +904,19 @@ def flatten_recursive(path='../coco128'): |
|
|
|
shutil.copyfile(file, new_path / Path(file).name) |
|
|
|
|
|
|
|
|
|
|
|
def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0)): # from utils.datasets import *; autosplit() |
|
|
|
""" Autosplit a dataset into train/val/test splits and save *.txt files |
|
|
|
def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0)): # from utils.datasets import *; autosplit('../coco128') |
|
|
|
""" Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files |
|
|
|
# Arguments |
|
|
|
path: Path to images directory |
|
|
|
weights: Train, val, test weights (list) |
|
|
|
""" |
|
|
|
path = Path(path) # images dir |
|
|
|
files = list(path.rglob('*.*')) |
|
|
|
indices = random.choices([0, 1, 2], weights=weights, k=len(files)) # assign each image to a split |
|
|
|
n = len(files) # number of files |
|
|
|
indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split |
|
|
|
txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files |
|
|
|
[(path / x).unlink() for x in txt if (path / x).exists()] # remove existing |
|
|
|
for i, img in tqdm(zip(indices, files)): |
|
|
|
for i, img in tqdm(zip(indices, files), total=n): |
|
|
|
if img.suffix[1:] in img_formats: |
|
|
|
with open(path / txt[i], 'a') as f: |
|
|
|
f.write(str(img) + '\n') # add image to txt file |