|
|
@@ -0,0 +1,310 @@ |
|
|
|
import argparse |
|
|
|
import glob |
|
|
|
import json |
|
|
|
import os |
|
|
|
import shutil |
|
|
|
from pathlib import Path |
|
|
|
|
|
|
|
import numpy as np |
|
|
|
import torch |
|
|
|
import yaml |
|
|
|
from tqdm import tqdm |
|
|
|
|
|
|
|
from models.experimental import attempt_load |
|
|
|
from utils.datasets import create_dataloader |
|
|
|
from utils.general import ( |
|
|
|
coco80_to_coco91_class, check_dataset, check_file, check_img_size, compute_loss, non_max_suppression, scale_coords, |
|
|
|
xyxy2xywh, clip_coords, plot_images, xywh2xyxy, box_iou, output_to_target, ap_per_class, set_logging) |
|
|
|
from utils.torch_utils import select_device, time_synchronized |
|
|
|
|
|
|
|
|
|
|
|
from sotabencheval.object_detection import COCOEvaluator |
|
|
|
from sotabencheval.utils import is_server |
|
|
|
|
|
|
|
DATA_ROOT = './.data/vision/coco' if is_server() else '../coco' # sotabench data dir |
|
|
|
|
|
|
|
|
|
|
|
def test(data, |
|
|
|
weights=None, |
|
|
|
batch_size=16, |
|
|
|
imgsz=640, |
|
|
|
conf_thres=0.001, |
|
|
|
iou_thres=0.6, # for NMS |
|
|
|
save_json=False, |
|
|
|
single_cls=False, |
|
|
|
augment=False, |
|
|
|
verbose=False, |
|
|
|
model=None, |
|
|
|
dataloader=None, |
|
|
|
save_dir='', |
|
|
|
merge=False, |
|
|
|
save_txt=False): |
|
|
|
# Initialize/load model and set device |
|
|
|
training = model is not None |
|
|
|
if training: # called by train.py |
|
|
|
device = next(model.parameters()).device # get model device |
|
|
|
|
|
|
|
else: # called directly |
|
|
|
set_logging() |
|
|
|
device = select_device(opt.device, batch_size=batch_size) |
|
|
|
merge, save_txt = opt.merge, opt.save_txt # use Merge NMS, save *.txt labels |
|
|
|
if save_txt: |
|
|
|
out = Path('inference/output') |
|
|
|
if os.path.exists(out): |
|
|
|
shutil.rmtree(out) # delete output folder |
|
|
|
os.makedirs(out) # make new output folder |
|
|
|
|
|
|
|
# Remove previous |
|
|
|
for f in glob.glob(str(Path(save_dir) / 'test_batch*.jpg')): |
|
|
|
os.remove(f) |
|
|
|
|
|
|
|
# Load model |
|
|
|
model = attempt_load(weights, map_location=device) # load FP32 model |
|
|
|
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size |
|
|
|
|
|
|
|
# Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99 |
|
|
|
# if device.type != 'cpu' and torch.cuda.device_count() > 1: |
|
|
|
# model = nn.DataParallel(model) |
|
|
|
|
|
|
|
# Half |
|
|
|
half = device.type != 'cpu' # half precision only supported on CUDA |
|
|
|
if half: |
|
|
|
model.half() |
|
|
|
|
|
|
|
# Configure |
|
|
|
model.eval() |
|
|
|
with open(data) as f: |
|
|
|
data = yaml.load(f, Loader=yaml.FullLoader) # model dict |
|
|
|
check_dataset(data) # check |
|
|
|
nc = 1 if single_cls else int(data['nc']) # number of classes |
|
|
|
iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95 |
|
|
|
niou = iouv.numel() |
|
|
|
|
|
|
|
# Dataloader |
|
|
|
if not training: |
|
|
|
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img |
|
|
|
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once |
|
|
|
path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images |
|
|
|
dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt, |
|
|
|
hyp=None, augment=False, cache=True, pad=0.5, rect=True)[0] |
|
|
|
|
|
|
|
seen = 0 |
|
|
|
names = model.names if hasattr(model, 'names') else model.module.names |
|
|
|
coco91class = coco80_to_coco91_class() |
|
|
|
s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95') |
|
|
|
p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0. |
|
|
|
loss = torch.zeros(3, device=device) |
|
|
|
jdict, stats, ap, ap_class = [], [], [], [] |
|
|
|
evaluator = COCOEvaluator(root=DATA_ROOT, model_name=opt.weights.replace('.pt', '')) |
|
|
|
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): |
|
|
|
img = img.to(device, non_blocking=True) |
|
|
|
img = img.half() if half else img.float() # uint8 to fp16/32 |
|
|
|
img /= 255.0 # 0 - 255 to 0.0 - 1.0 |
|
|
|
targets = targets.to(device) |
|
|
|
nb, _, height, width = img.shape # batch size, channels, height, width |
|
|
|
whwh = torch.Tensor([width, height, width, height]).to(device) |
|
|
|
|
|
|
|
# Disable gradients |
|
|
|
with torch.no_grad(): |
|
|
|
# Run model |
|
|
|
t = time_synchronized() |
|
|
|
inf_out, train_out = model(img, augment=augment) # inference and training outputs |
|
|
|
t0 += time_synchronized() - t |
|
|
|
|
|
|
|
# Compute loss |
|
|
|
if training: # if model has loss hyperparameters |
|
|
|
loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # GIoU, obj, cls |
|
|
|
|
|
|
|
# Run NMS |
|
|
|
t = time_synchronized() |
|
|
|
output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, merge=merge) |
|
|
|
t1 += time_synchronized() - t |
|
|
|
|
|
|
|
# Statistics per image |
|
|
|
for si, pred in enumerate(output): |
|
|
|
labels = targets[targets[:, 0] == si, 1:] |
|
|
|
nl = len(labels) |
|
|
|
tcls = labels[:, 0].tolist() if nl else [] # target class |
|
|
|
seen += 1 |
|
|
|
|
|
|
|
if pred is None: |
|
|
|
if nl: |
|
|
|
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) |
|
|
|
continue |
|
|
|
|
|
|
|
# Append to text file |
|
|
|
if save_txt: |
|
|
|
gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh |
|
|
|
x = pred.clone() |
|
|
|
x[:, :4] = scale_coords(img[si].shape[1:], x[:, :4], shapes[si][0], shapes[si][1]) # to original |
|
|
|
for *xyxy, conf, cls in x: |
|
|
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh |
|
|
|
with open(str(out / Path(paths[si]).stem) + '.txt', 'a') as f: |
|
|
|
f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format |
|
|
|
|
|
|
|
# Clip boxes to image bounds |
|
|
|
clip_coords(pred, (height, width)) |
|
|
|
|
|
|
|
# Append to pycocotools JSON dictionary |
|
|
|
if save_json: |
|
|
|
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ... |
|
|
|
image_id = Path(paths[si]).stem |
|
|
|
box = pred[:, :4].clone() # xyxy |
|
|
|
scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape |
|
|
|
box = xyxy2xywh(box) # xywh |
|
|
|
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner |
|
|
|
for p, b in zip(pred.tolist(), box.tolist()): |
|
|
|
result = {'image_id': int(image_id) if image_id.isnumeric() else image_id, |
|
|
|
'category_id': coco91class[int(p[5])], |
|
|
|
'bbox': [round(x, 3) for x in b], |
|
|
|
'score': round(p[4], 5)} |
|
|
|
jdict.append(result) |
|
|
|
|
|
|
|
#evaluator.add([result]) |
|
|
|
#if evaluator.cache_exists: |
|
|
|
# break |
|
|
|
|
|
|
|
# # Assign all predictions as incorrect |
|
|
|
# correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device) |
|
|
|
# if nl: |
|
|
|
# detected = [] # target indices |
|
|
|
# tcls_tensor = labels[:, 0] |
|
|
|
# |
|
|
|
# # target boxes |
|
|
|
# tbox = xywh2xyxy(labels[:, 1:5]) * whwh |
|
|
|
# |
|
|
|
# # Per target class |
|
|
|
# for cls in torch.unique(tcls_tensor): |
|
|
|
# ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices |
|
|
|
# pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices |
|
|
|
# |
|
|
|
# # Search for detections |
|
|
|
# if pi.shape[0]: |
|
|
|
# # Prediction to target ious |
|
|
|
# ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1) # best ious, indices |
|
|
|
# |
|
|
|
# # Append detections |
|
|
|
# detected_set = set() |
|
|
|
# for j in (ious > iouv[0]).nonzero(as_tuple=False): |
|
|
|
# d = ti[i[j]] # detected target |
|
|
|
# if d.item() not in detected_set: |
|
|
|
# detected_set.add(d.item()) |
|
|
|
# detected.append(d) |
|
|
|
# correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn |
|
|
|
# if len(detected) == nl: # all targets already located in image |
|
|
|
# break |
|
|
|
# |
|
|
|
# # Append statistics (correct, conf, pcls, tcls) |
|
|
|
# stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) |
|
|
|
|
|
|
|
# # Plot images |
|
|
|
# if batch_i < 1: |
|
|
|
# f = Path(save_dir) / ('test_batch%g_gt.jpg' % batch_i) # filename |
|
|
|
# plot_images(img, targets, paths, str(f), names) # ground truth |
|
|
|
# f = Path(save_dir) / ('test_batch%g_pred.jpg' % batch_i) |
|
|
|
# plot_images(img, output_to_target(output, width, height), paths, str(f), names) # predictions |
|
|
|
|
|
|
|
evaluator.add(jdict) |
|
|
|
evaluator.save() |
|
|
|
|
|
|
|
# # Compute statistics |
|
|
|
# stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy |
|
|
|
# if len(stats) and stats[0].any(): |
|
|
|
# p, r, ap, f1, ap_class = ap_per_class(*stats) |
|
|
|
# p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, AP@0.5, AP@0.5:0.95] |
|
|
|
# mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() |
|
|
|
# nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class |
|
|
|
# else: |
|
|
|
# nt = torch.zeros(1) |
|
|
|
# |
|
|
|
# # Print results |
|
|
|
# pf = '%20s' + '%12.3g' * 6 # print format |
|
|
|
# print(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) |
|
|
|
# |
|
|
|
# # Print results per class |
|
|
|
# if verbose and nc > 1 and len(stats): |
|
|
|
# for i, c in enumerate(ap_class): |
|
|
|
# print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) |
|
|
|
# |
|
|
|
# # Print speeds |
|
|
|
# t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple |
|
|
|
# if not training: |
|
|
|
# print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t) |
|
|
|
# |
|
|
|
# # Save JSON |
|
|
|
# if save_json and len(jdict): |
|
|
|
# f = 'detections_val2017_%s_results.json' % \ |
|
|
|
# (weights.split(os.sep)[-1].replace('.pt', '') if isinstance(weights, str) else '') # filename |
|
|
|
# print('\nCOCO mAP with pycocotools... saving %s...' % f) |
|
|
|
# with open(f, 'w') as file: |
|
|
|
# json.dump(jdict, file) |
|
|
|
# |
|
|
|
# try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb |
|
|
|
# from pycocotools.coco import COCO |
|
|
|
# from pycocotools.cocoeval import COCOeval |
|
|
|
# |
|
|
|
# imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] |
|
|
|
# cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0]) # initialize COCO ground truth api |
|
|
|
# cocoDt = cocoGt.loadRes(f) # initialize COCO pred api |
|
|
|
# cocoEval = COCOeval(cocoGt, cocoDt, 'bbox') |
|
|
|
# cocoEval.params.imgIds = imgIds # image IDs to evaluate |
|
|
|
# cocoEval.evaluate() |
|
|
|
# cocoEval.accumulate() |
|
|
|
# cocoEval.summarize() |
|
|
|
# map, map50 = cocoEval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5) |
|
|
|
# except Exception as e: |
|
|
|
# print('ERROR: pycocotools unable to run: %s' % e) |
|
|
|
# |
|
|
|
# # Return results |
|
|
|
# model.float() # for training |
|
|
|
# maps = np.zeros(nc) + map |
|
|
|
# for i, c in enumerate(ap_class): |
|
|
|
# maps[c] = ap[i] |
|
|
|
# return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
parser = argparse.ArgumentParser(prog='test.py') |
|
|
|
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)') |
|
|
|
parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path') |
|
|
|
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch') |
|
|
|
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') |
|
|
|
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold') |
|
|
|
parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS') |
|
|
|
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file') |
|
|
|
parser.add_argument('--task', default='val', help="'val', 'test', 'study'") |
|
|
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
|
|
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset') |
|
|
|
parser.add_argument('--augment', action='store_true', help='augmented inference') |
|
|
|
parser.add_argument('--merge', action='store_true', help='use Merge NMS') |
|
|
|
parser.add_argument('--verbose', action='store_true', help='report mAP by class') |
|
|
|
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') |
|
|
|
opt = parser.parse_args() |
|
|
|
opt.save_json |= opt.data.endswith('coco.yaml') |
|
|
|
opt.data = check_file(opt.data) # check file |
|
|
|
print(opt) |
|
|
|
|
|
|
|
if opt.task in ['val', 'test']: # run normally |
|
|
|
test(opt.data, |
|
|
|
opt.weights, |
|
|
|
opt.batch_size, |
|
|
|
opt.img_size, |
|
|
|
opt.conf_thres, |
|
|
|
opt.iou_thres, |
|
|
|
opt.save_json, |
|
|
|
opt.single_cls, |
|
|
|
opt.augment, |
|
|
|
opt.verbose) |
|
|
|
|
|
|
|
elif opt.task == 'study': # run over a range of settings and save/plot |
|
|
|
for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']: |
|
|
|
f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to |
|
|
|
x = list(range(320, 800, 64)) # x axis |
|
|
|
y = [] # y axis |
|
|
|
for i in x: # img-size |
|
|
|
print('\nRunning %s point %s...' % (f, i)) |
|
|
|
r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json) |
|
|
|
y.append(r + t) # results and times |
|
|
|
np.savetxt(f, y, fmt='%10.4g') # save |
|
|
|
os.system('zip -r study.zip study_*.txt') |
|
|
|
# utils.general.plot_study_txt(f, x) # plot |