|
|
@@ -119,7 +119,7 @@ def test(data, |
|
|
|
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels |
|
|
|
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling |
|
|
|
t = time_synchronized() |
|
|
|
out = non_max_suppression(out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb, multi_label=True) |
|
|
|
out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls) |
|
|
|
t1 += time_synchronized() - t |
|
|
|
|
|
|
|
# Statistics per image |
|
|
@@ -136,6 +136,8 @@ def test(data, |
|
|
|
continue |
|
|
|
|
|
|
|
# Predictions |
|
|
|
if single_cls: |
|
|
|
pred[:, 5] = 0 |
|
|
|
predn = pred.clone() |
|
|
|
scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred |
|
|
|
|