Quellcode durchsuchen

ONNX, BCEBlurWithLogitsLoss, plot_study updates

5.0
Glenn Jocher vor 4 Jahren
Ursprung
Commit
3a5c5328c5
2 geänderte Dateien mit 24 neuen und 4 gelöschten Zeilen
  1. +6
    -3
      models/onnx_export.py
  2. +18
    -1
      utils/utils.py

+ 6
- 3
models/onnx_export.py Datei anzeigen

@@ -1,6 +1,9 @@
# Exports a pytorch *.pt model to *.onnx format
# Example usage (run from ./yolov5 directory):
# $ export PYTHONPATH="$PWD" && python models/onnx_export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
"""Exports a pytorch *.pt model to *.onnx format

Usage:
import torch
$ export PYTHONPATH="$PWD" && python models/onnx_export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
"""

import argparse


+ 18
- 1
utils/utils.py Datei anzeigen

@@ -339,6 +339,23 @@ def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#iss
return 1.0 - 0.5 * eps, 0.5 * eps


class BCEBlurWithLogitsLoss(nn.Module):
# BCEwithLogitLoss() with reduced missing label effects.
def __init__(self, alpha=0.05):
super(BCEBlurWithLogitsLoss, self).__init__()
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
self.alpha = alpha

def forward(self, pred, true):
loss = self.loss_fcn(pred, true)
pred = torch.sigmoid(pred) # prob from logits
dx = pred - true # reduce only missing label effects
# dx = (pred - true).abs() # reduce missing label and false label effects
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
loss *= alpha_factor
return loss.mean()


def compute_loss(p, targets, model): # predictions, targets, model
ft = torch.cuda.FloatTensor if p[0].is_cuda else torch.Tensor
lcls, lbox, lobj = ft([0]), ft([0]), ft([0])
@@ -1009,7 +1026,7 @@ def plot_study_txt(f='study.txt', x=None): # from utils.utils import *; plot_st
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [33.5, 39.1, 42.5, 45.9, 49., 50.5],
'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
ax2.set_xlim(0, 30)
ax2.set_ylim(23, 50)
ax2.set_ylim(25, 50)
ax2.set_xlabel('GPU Latency (ms)')
ax2.set_ylabel('COCO AP val')
ax2.legend(loc='lower right')

Laden…
Abbrechen
Speichern