Explorar el Código

Multiple TF export improvements (#4824)

* Add fused conv support

* Set all saved_model values to non trainable

* Fix TFLite fp16 model export

* Fix int8 TFLite conversion
modifyDataloader
Jiacong Fang GitHub hace 3 años
padre
commit
3beb871ba4
No se encontró ninguna clave conocida en la base de datos para esta firma ID de clave GPG: 4AEE18F83AFDEB23
Se han modificado 2 ficheros con 8 adiciones y 4 borrados
  1. +5
    -2
      export.py
  2. +3
    -2
      models/tf.py

+ 5
- 2
export.py Ver fichero

@@ -145,6 +145,7 @@ def export_saved_model(model, im, file, dynamic,
inputs = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
keras_model = keras.Model(inputs=inputs, outputs=outputs)
keras_model.trainable = False
keras_model.summary()
keras_model.save(f, save_format='tf')

@@ -183,15 +184,17 @@ def export_tflite(keras_model, im, file, int8, data, ncalib, prefix=colorstr('Te

print(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
batch_size, ch, *imgsz = list(im.shape) # BCHW
f = file.with_suffix('.tflite')
f = str(file).replace('.pt', '-fp16.tflite')

converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
converter.target_spec.supported_types = [tf.float16]
converter.optimizations = [tf.lite.Optimize.DEFAULT]
if int8:
dataset = LoadImages(check_dataset(data)['train'], img_size=imgsz, auto=False) # representative data
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib)
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.target_spec.supported_types = []
converter.inference_input_type = tf.uint8 # or tf.int8
converter.inference_output_type = tf.uint8 # or tf.int8
converter.experimental_new_quantizer = False
@@ -249,7 +252,7 @@ def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
# Load PyTorch model
device = select_device(device)
assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
model = attempt_load(weights, map_location=device, inplace=True, fuse=not any(tf_exports)) # load FP32 model
model = attempt_load(weights, map_location=device, inplace=True, fuse=True) # load FP32 model
nc, names = model.nc, model.names # number of classes, class names

# Input

+ 3
- 2
models/tf.py Ver fichero

@@ -70,8 +70,9 @@ class TFConv(keras.layers.Layer):
# see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch

conv = keras.layers.Conv2D(
c2, k, s, 'SAME' if s == 1 else 'VALID', use_bias=False,
kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()))
c2, k, s, 'SAME' if s == 1 else 'VALID', use_bias=False if hasattr(w, 'bn') else True,
kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity


Cargando…
Cancelar
Guardar