|
|
@@ -1,5 +1,4 @@ |
|
|
|
import argparse |
|
|
|
import glob |
|
|
|
import math |
|
|
|
import os |
|
|
|
import random |
|
|
@@ -26,31 +25,7 @@ from utils.general import ( |
|
|
|
labels_to_image_weights, compute_loss, plot_images, fitness, strip_optimizer, plot_results, |
|
|
|
get_latest_run, check_git_status, check_file, increment_dir, print_mutation, plot_evolution) |
|
|
|
from utils.google_utils import attempt_download |
|
|
|
from utils.torch_utils import init_seeds, ModelEMA, select_device |
|
|
|
|
|
|
|
# Hyperparameters |
|
|
|
hyp = {'lr0': 0.01, # initial learning rate (SGD=1E-2, Adam=1E-3) |
|
|
|
'momentum': 0.937, # SGD momentum/Adam beta1 |
|
|
|
'weight_decay': 5e-4, # optimizer weight decay |
|
|
|
'giou': 0.05, # GIoU loss gain |
|
|
|
'cls': 0.5, # cls loss gain |
|
|
|
'cls_pw': 1.0, # cls BCELoss positive_weight |
|
|
|
'obj': 1.0, # obj loss gain (scale with pixels) |
|
|
|
'obj_pw': 1.0, # obj BCELoss positive_weight |
|
|
|
'iou_t': 0.20, # IoU training threshold |
|
|
|
'anchor_t': 4.0, # anchor-multiple threshold |
|
|
|
'fl_gamma': 0.0, # focal loss gamma (efficientDet default gamma=1.5) |
|
|
|
'hsv_h': 0.015, # image HSV-Hue augmentation (fraction) |
|
|
|
'hsv_s': 0.7, # image HSV-Saturation augmentation (fraction) |
|
|
|
'hsv_v': 0.4, # image HSV-Value augmentation (fraction) |
|
|
|
'degrees': 0.0, # image rotation (+/- deg) |
|
|
|
'translate': 0.5, # image translation (+/- fraction) |
|
|
|
'scale': 0.5, # image scale (+/- gain) |
|
|
|
'shear': 0.0, # image shear (+/- deg) |
|
|
|
'perspective': 0.0, # image perspective (+/- fraction), range 0-0.001 |
|
|
|
'flipud': 0.0, # image flip up-down (probability) |
|
|
|
'fliplr': 0.5, # image flip left-right (probability) |
|
|
|
'mixup': 0.0} # image mixup (probability) |
|
|
|
from utils.torch_utils import init_seeds, ModelEMA, select_device, intersect_dicts |
|
|
|
|
|
|
|
|
|
|
|
def train(hyp, opt, device, tb_writer=None): |
|
|
@@ -63,7 +38,7 @@ def train(hyp, opt, device, tb_writer=None): |
|
|
|
results_file = str(log_dir / 'results.txt') |
|
|
|
epochs, batch_size, total_batch_size, weights, rank = \ |
|
|
|
opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank |
|
|
|
|
|
|
|
|
|
|
|
# TODO: Use DDP logging. Only the first process is allowed to log. |
|
|
|
# Save run settings |
|
|
|
with open(log_dir / 'hyp.yaml', 'w') as f: |
|
|
@@ -81,38 +56,35 @@ def train(hyp, opt, device, tb_writer=None): |
|
|
|
nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names']) # number classes, names |
|
|
|
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check |
|
|
|
|
|
|
|
# Remove previous results |
|
|
|
if rank in [-1, 0]: |
|
|
|
for f in glob.glob('*_batch*.jpg') + glob.glob(results_file): |
|
|
|
os.remove(f) |
|
|
|
|
|
|
|
# Create model |
|
|
|
model = Model(opt.cfg, nc=nc).to(device) |
|
|
|
|
|
|
|
# Image sizes |
|
|
|
gs = int(max(model.stride)) # grid size (max stride) |
|
|
|
imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples |
|
|
|
# Model |
|
|
|
pretrained = weights.endswith('.pt') |
|
|
|
if pretrained: |
|
|
|
with torch_distributed_zero_first(rank): |
|
|
|
attempt_download(weights) # download if not found locally |
|
|
|
ckpt = torch.load(weights, map_location=device) # load checkpoint |
|
|
|
model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device) # create |
|
|
|
exclude = ['anchor'] if opt.cfg else [] # exclude keys |
|
|
|
state_dict = ckpt['model'].float().state_dict() # to FP32 |
|
|
|
state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect |
|
|
|
model.load_state_dict(state_dict, strict=False) # load |
|
|
|
print('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report |
|
|
|
else: |
|
|
|
model = Model(opt.cfg, ch=3, nc=nc).to(device) # create |
|
|
|
|
|
|
|
# Optimizer |
|
|
|
nbs = 64 # nominal batch size |
|
|
|
# default DDP implementation is slow for accumulation according to: https://pytorch.org/docs/stable/notes/ddp.html |
|
|
|
# all-reduce operation is carried out during loss.backward(). |
|
|
|
# Thus, there would be redundant all-reduce communications in a accumulation procedure, |
|
|
|
# which means, the result is still right but the training speed gets slower. |
|
|
|
# TODO: If acceleration is needed, there is an implementation of allreduce_post_accumulation |
|
|
|
# in https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/run_pretraining.py |
|
|
|
accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing |
|
|
|
hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay |
|
|
|
|
|
|
|
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups |
|
|
|
for k, v in model.named_parameters(): |
|
|
|
if v.requires_grad: |
|
|
|
if '.bias' in k: |
|
|
|
pg2.append(v) # biases |
|
|
|
elif '.weight' in k and '.bn' not in k: |
|
|
|
pg1.append(v) # apply weight decay |
|
|
|
else: |
|
|
|
pg0.append(v) # all else |
|
|
|
v.requires_grad = True |
|
|
|
if '.bias' in k: |
|
|
|
pg2.append(v) # biases |
|
|
|
elif '.weight' in k and '.bn' not in k: |
|
|
|
pg1.append(v) # apply weight decay |
|
|
|
else: |
|
|
|
pg0.append(v) # all else |
|
|
|
|
|
|
|
if opt.adam: |
|
|
|
optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum |
|
|
@@ -130,45 +102,27 @@ def train(hyp, opt, device, tb_writer=None): |
|
|
|
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) |
|
|
|
# plot_lr_scheduler(optimizer, scheduler, epochs) |
|
|
|
|
|
|
|
# Load Model |
|
|
|
with torch_distributed_zero_first(rank): |
|
|
|
attempt_download(weights) |
|
|
|
# Resume |
|
|
|
start_epoch, best_fitness = 0, 0.0 |
|
|
|
if weights.endswith('.pt'): # pytorch format |
|
|
|
ckpt = torch.load(weights, map_location=device) # load checkpoint |
|
|
|
|
|
|
|
# load model |
|
|
|
try: |
|
|
|
exclude = ['anchor'] # exclude keys |
|
|
|
ckpt['model'] = {k: v for k, v in ckpt['model'].float().state_dict().items() |
|
|
|
if k in model.state_dict() and not any(x in k for x in exclude) |
|
|
|
and model.state_dict()[k].shape == v.shape} |
|
|
|
model.load_state_dict(ckpt['model'], strict=False) |
|
|
|
print('Transferred %g/%g items from %s' % (len(ckpt['model']), len(model.state_dict()), weights)) |
|
|
|
except KeyError as e: |
|
|
|
s = "%s is not compatible with %s. This may be due to model differences or %s may be out of date. " \ |
|
|
|
"Please delete or update %s and try again, or use --weights '' to train from scratch." \ |
|
|
|
% (weights, opt.cfg, weights, weights) |
|
|
|
raise KeyError(s) from e |
|
|
|
|
|
|
|
# load optimizer |
|
|
|
if pretrained: |
|
|
|
# Optimizer |
|
|
|
if ckpt['optimizer'] is not None: |
|
|
|
optimizer.load_state_dict(ckpt['optimizer']) |
|
|
|
best_fitness = ckpt['best_fitness'] |
|
|
|
|
|
|
|
# load results |
|
|
|
# Results |
|
|
|
if ckpt.get('training_results') is not None: |
|
|
|
with open(results_file, 'w') as file: |
|
|
|
file.write(ckpt['training_results']) # write results.txt |
|
|
|
|
|
|
|
# epochs |
|
|
|
# Epochs |
|
|
|
start_epoch = ckpt['epoch'] + 1 |
|
|
|
if epochs < start_epoch: |
|
|
|
print('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' % |
|
|
|
(weights, ckpt['epoch'], epochs)) |
|
|
|
epochs += ckpt['epoch'] # finetune additional epochs |
|
|
|
|
|
|
|
del ckpt |
|
|
|
del ckpt, state_dict |
|
|
|
|
|
|
|
# DP mode |
|
|
|
if cuda and rank == -1 and torch.cuda.device_count() > 1: |
|
|
@@ -186,6 +140,10 @@ def train(hyp, opt, device, tb_writer=None): |
|
|
|
if cuda and rank != -1: |
|
|
|
model = DDP(model, device_ids=[opt.local_rank], output_device=(opt.local_rank)) |
|
|
|
|
|
|
|
# Image sizes |
|
|
|
gs = int(max(model.stride)) # grid size (max stride) |
|
|
|
imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples |
|
|
|
|
|
|
|
# Trainloader |
|
|
|
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, hyp=hyp, augment=True, |
|
|
|
cache=opt.cache_images, rect=opt.rect, local_rank=rank, |
|
|
@@ -411,9 +369,10 @@ def train(hyp, opt, device, tb_writer=None): |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='model.yaml path') |
|
|
|
parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path') |
|
|
|
parser.add_argument('--cfg', type=str, default='', help='model.yaml path') |
|
|
|
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path') |
|
|
|
parser.add_argument('--hyp', type=str, default='', help='hyp.yaml path (optional)') |
|
|
|
parser.add_argument('--hyp', type=str, default='data/hyp.finetune.yaml', help='hyperparameters path') |
|
|
|
parser.add_argument('--epochs', type=int, default=300) |
|
|
|
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs') |
|
|
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes') |
|
|
@@ -426,7 +385,6 @@ if __name__ == '__main__': |
|
|
|
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters') |
|
|
|
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') |
|
|
|
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training') |
|
|
|
parser.add_argument('--weights', type=str, default='', help='initial weights path') |
|
|
|
parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied') |
|
|
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
|
|
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') |
|
|
@@ -444,18 +402,17 @@ if __name__ == '__main__': |
|
|
|
opt.weights = last if opt.resume and not opt.weights else opt.weights |
|
|
|
if opt.local_rank == -1 or ("RANK" in os.environ and os.environ["RANK"] == "0"): |
|
|
|
check_git_status() |
|
|
|
opt.cfg = check_file(opt.cfg) # check file |
|
|
|
opt.data = check_file(opt.data) # check file |
|
|
|
if opt.hyp: # update hyps |
|
|
|
opt.hyp = check_file(opt.hyp) # check file |
|
|
|
with open(opt.hyp) as f: |
|
|
|
hyp.update(yaml.load(f, Loader=yaml.FullLoader)) # update hyps |
|
|
|
|
|
|
|
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files |
|
|
|
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' |
|
|
|
assert len(opt.hyp), '--hyp must be specified' |
|
|
|
|
|
|
|
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test) |
|
|
|
device = select_device(opt.device, batch_size=opt.batch_size) |
|
|
|
opt.total_batch_size = opt.batch_size |
|
|
|
opt.world_size = 1 |
|
|
|
opt.global_rank = -1 |
|
|
|
|
|
|
|
|
|
|
|
# DDP mode |
|
|
|
if opt.local_rank != -1: |
|
|
|
assert torch.cuda.device_count() > opt.local_rank |
|
|
@@ -468,6 +425,8 @@ if __name__ == '__main__': |
|
|
|
opt.batch_size = opt.total_batch_size // opt.world_size |
|
|
|
|
|
|
|
print(opt) |
|
|
|
with open(opt.hyp) as f: |
|
|
|
hyp = yaml.load(f, Loader=yaml.FullLoader) # load hyps |
|
|
|
|
|
|
|
# Train |
|
|
|
if not opt.evolve: |