Browse Source

Single-source training (#680)

* Single-source training

* Extract hyperparameters into seperate files

* weight decay scientific notation yaml reader bug fix

* remove import glob

* intersect_dicts() implementation

* 'or' bug fix

* .to(device) bug fix
5.0
Glenn Jocher GitHub 4 years ago
parent
commit
3c6e2f7668
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 105 additions and 88 deletions
  1. +27
    -0
      data/hyp.finetune.yaml
  2. +27
    -0
      data/hyp.scratch.yaml
  3. +44
    -85
      train.py
  4. +1
    -1
      utils/general.py
  5. +6
    -2
      utils/torch_utils.py

+ 27
- 0
data/hyp.finetune.yaml View File

@@ -0,0 +1,27 @@
# Hyperparameters for VOC fine-tuning
# python train.py --batch 64 --cfg '' --weights yolov5m.pt --data voc.yaml --img 512 --epochs 50
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials


lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
giou: 0.05 # GIoU loss gain
cls: 0.5 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 1.0 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
degrees: 0.0 # image rotation (+/- deg)
translate: 0.5 # image translation (+/- fraction)
scale: 0.5 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mixup: 0.0 # image mixup (probability)

+ 27
- 0
data/hyp.scratch.yaml View File

@@ -0,0 +1,27 @@
# Hyperparameters for COCO training from scratch
# python train.py --batch 40 --cfg yolov5m.yaml --weights '' --data coco.yaml --img 640 --epochs 300
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials


lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
giou: 0.05 # GIoU loss gain
cls: 0.5 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 1.0 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
degrees: 0.0 # image rotation (+/- deg)
translate: 0.5 # image translation (+/- fraction)
scale: 0.5 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mixup: 0.0 # image mixup (probability)

+ 44
- 85
train.py View File

@@ -1,5 +1,4 @@
import argparse
import glob
import math
import os
import random
@@ -26,31 +25,7 @@ from utils.general import (
labels_to_image_weights, compute_loss, plot_images, fitness, strip_optimizer, plot_results,
get_latest_run, check_git_status, check_file, increment_dir, print_mutation, plot_evolution)
from utils.google_utils import attempt_download
from utils.torch_utils import init_seeds, ModelEMA, select_device

# Hyperparameters
hyp = {'lr0': 0.01, # initial learning rate (SGD=1E-2, Adam=1E-3)
'momentum': 0.937, # SGD momentum/Adam beta1
'weight_decay': 5e-4, # optimizer weight decay
'giou': 0.05, # GIoU loss gain
'cls': 0.5, # cls loss gain
'cls_pw': 1.0, # cls BCELoss positive_weight
'obj': 1.0, # obj loss gain (scale with pixels)
'obj_pw': 1.0, # obj BCELoss positive_weight
'iou_t': 0.20, # IoU training threshold
'anchor_t': 4.0, # anchor-multiple threshold
'fl_gamma': 0.0, # focal loss gamma (efficientDet default gamma=1.5)
'hsv_h': 0.015, # image HSV-Hue augmentation (fraction)
'hsv_s': 0.7, # image HSV-Saturation augmentation (fraction)
'hsv_v': 0.4, # image HSV-Value augmentation (fraction)
'degrees': 0.0, # image rotation (+/- deg)
'translate': 0.5, # image translation (+/- fraction)
'scale': 0.5, # image scale (+/- gain)
'shear': 0.0, # image shear (+/- deg)
'perspective': 0.0, # image perspective (+/- fraction), range 0-0.001
'flipud': 0.0, # image flip up-down (probability)
'fliplr': 0.5, # image flip left-right (probability)
'mixup': 0.0} # image mixup (probability)
from utils.torch_utils import init_seeds, ModelEMA, select_device, intersect_dicts


def train(hyp, opt, device, tb_writer=None):
@@ -63,7 +38,7 @@ def train(hyp, opt, device, tb_writer=None):
results_file = str(log_dir / 'results.txt')
epochs, batch_size, total_batch_size, weights, rank = \
opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
# TODO: Use DDP logging. Only the first process is allowed to log.
# Save run settings
with open(log_dir / 'hyp.yaml', 'w') as f:
@@ -81,38 +56,35 @@ def train(hyp, opt, device, tb_writer=None):
nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names']) # number classes, names
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check

# Remove previous results
if rank in [-1, 0]:
for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
os.remove(f)

# Create model
model = Model(opt.cfg, nc=nc).to(device)

# Image sizes
gs = int(max(model.stride)) # grid size (max stride)
imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
# Model
pretrained = weights.endswith('.pt')
if pretrained:
with torch_distributed_zero_first(rank):
attempt_download(weights) # download if not found locally
ckpt = torch.load(weights, map_location=device) # load checkpoint
model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device) # create
exclude = ['anchor'] if opt.cfg else [] # exclude keys
state_dict = ckpt['model'].float().state_dict() # to FP32
state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
model.load_state_dict(state_dict, strict=False) # load
print('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
else:
model = Model(opt.cfg, ch=3, nc=nc).to(device) # create

# Optimizer
nbs = 64 # nominal batch size
# default DDP implementation is slow for accumulation according to: https://pytorch.org/docs/stable/notes/ddp.html
# all-reduce operation is carried out during loss.backward().
# Thus, there would be redundant all-reduce communications in a accumulation procedure,
# which means, the result is still right but the training speed gets slower.
# TODO: If acceleration is needed, there is an implementation of allreduce_post_accumulation
# in https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/run_pretraining.py
accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay

pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
for k, v in model.named_parameters():
if v.requires_grad:
if '.bias' in k:
pg2.append(v) # biases
elif '.weight' in k and '.bn' not in k:
pg1.append(v) # apply weight decay
else:
pg0.append(v) # all else
v.requires_grad = True
if '.bias' in k:
pg2.append(v) # biases
elif '.weight' in k and '.bn' not in k:
pg1.append(v) # apply weight decay
else:
pg0.append(v) # all else

if opt.adam:
optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
@@ -130,45 +102,27 @@ def train(hyp, opt, device, tb_writer=None):
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
# plot_lr_scheduler(optimizer, scheduler, epochs)

# Load Model
with torch_distributed_zero_first(rank):
attempt_download(weights)
# Resume
start_epoch, best_fitness = 0, 0.0
if weights.endswith('.pt'): # pytorch format
ckpt = torch.load(weights, map_location=device) # load checkpoint

# load model
try:
exclude = ['anchor'] # exclude keys
ckpt['model'] = {k: v for k, v in ckpt['model'].float().state_dict().items()
if k in model.state_dict() and not any(x in k for x in exclude)
and model.state_dict()[k].shape == v.shape}
model.load_state_dict(ckpt['model'], strict=False)
print('Transferred %g/%g items from %s' % (len(ckpt['model']), len(model.state_dict()), weights))
except KeyError as e:
s = "%s is not compatible with %s. This may be due to model differences or %s may be out of date. " \
"Please delete or update %s and try again, or use --weights '' to train from scratch." \
% (weights, opt.cfg, weights, weights)
raise KeyError(s) from e

# load optimizer
if pretrained:
# Optimizer
if ckpt['optimizer'] is not None:
optimizer.load_state_dict(ckpt['optimizer'])
best_fitness = ckpt['best_fitness']

# load results
# Results
if ckpt.get('training_results') is not None:
with open(results_file, 'w') as file:
file.write(ckpt['training_results']) # write results.txt

# epochs
# Epochs
start_epoch = ckpt['epoch'] + 1
if epochs < start_epoch:
print('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
(weights, ckpt['epoch'], epochs))
epochs += ckpt['epoch'] # finetune additional epochs

del ckpt
del ckpt, state_dict

# DP mode
if cuda and rank == -1 and torch.cuda.device_count() > 1:
@@ -186,6 +140,10 @@ def train(hyp, opt, device, tb_writer=None):
if cuda and rank != -1:
model = DDP(model, device_ids=[opt.local_rank], output_device=(opt.local_rank))

# Image sizes
gs = int(max(model.stride)) # grid size (max stride)
imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples

# Trainloader
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, hyp=hyp, augment=True,
cache=opt.cache_images, rect=opt.rect, local_rank=rank,
@@ -411,9 +369,10 @@ def train(hyp, opt, device, tb_writer=None):

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='model.yaml path')
parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
parser.add_argument('--hyp', type=str, default='', help='hyp.yaml path (optional)')
parser.add_argument('--hyp', type=str, default='data/hyp.finetune.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes')
@@ -426,7 +385,6 @@ if __name__ == '__main__':
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
parser.add_argument('--weights', type=str, default='', help='initial weights path')
parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
@@ -444,18 +402,17 @@ if __name__ == '__main__':
opt.weights = last if opt.resume and not opt.weights else opt.weights
if opt.local_rank == -1 or ("RANK" in os.environ and os.environ["RANK"] == "0"):
check_git_status()
opt.cfg = check_file(opt.cfg) # check file
opt.data = check_file(opt.data) # check file
if opt.hyp: # update hyps
opt.hyp = check_file(opt.hyp) # check file
with open(opt.hyp) as f:
hyp.update(yaml.load(f, Loader=yaml.FullLoader)) # update hyps

opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
assert len(opt.hyp), '--hyp must be specified'

opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
device = select_device(opt.device, batch_size=opt.batch_size)
opt.total_batch_size = opt.batch_size
opt.world_size = 1
opt.global_rank = -1
# DDP mode
if opt.local_rank != -1:
assert torch.cuda.device_count() > opt.local_rank
@@ -468,6 +425,8 @@ if __name__ == '__main__':
opt.batch_size = opt.total_batch_size // opt.world_size

print(opt)
with open(opt.hyp) as f:
hyp = yaml.load(f, Loader=yaml.FullLoader) # load hyps

# Train
if not opt.evolve:

+ 1
- 1
utils/general.py View File

@@ -120,7 +120,7 @@ def check_anchor_order(m):

def check_file(file):
# Searches for file if not found locally
if os.path.isfile(file):
if os.path.isfile(file) or file == '':
return file
else:
files = glob.glob('./**/' + file, recursive=True) # find file

+ 6
- 2
utils/torch_utils.py View File

@@ -55,10 +55,14 @@ def time_synchronized():


def is_parallel(model):
# is model is parallel with DP or DDP
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)


def intersect_dicts(da, db, exclude=()):
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}


def initialize_weights(model):
for m in model.modules():
t = type(m)
@@ -72,7 +76,7 @@ def initialize_weights(model):


def find_modules(model, mclass=nn.Conv2d):
# finds layer indices matching module class 'mclass'
# Finds layer indices matching module class 'mclass'
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]



Loading…
Cancel
Save