Просмотр исходного кода

Parameterize max_det + inference default at 1000 (#3215)

* Added max_det parameters in various places

* 120 character line

* PEP8

* 120 character line

* Update inference default to 1000 instances

* Update inference default to 1000 instances

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
modifyDataloader
Adrian Holovaty GitHub 3 лет назад
Родитель
Сommit
3f74cd9ed1
Не найден GPG ключ соответствующий данной подписи Идентификатор GPG ключа: 4AEE18F83AFDEB23
3 измененных файлов: 8 добавлений и 5 удалений
  1. +3
    -1
      detect.py
  2. +4
    -2
      models/common.py
  3. +1
    -2
      utils/general.py

+ 3
- 1
detect.py Просмотреть файл

@@ -68,7 +68,8 @@ def detect(opt):
pred = model(img, augment=opt.augment)[0]

# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, opt.classes, opt.agnostic_nms,
max_det=opt.max_det)
t2 = time_synchronized()

# Apply Classifier
@@ -153,6 +154,7 @@ if __name__ == '__main__':
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--max-det', type=int, default=1000, help='maximum number of detections per image')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')

+ 4
- 2
models/common.py Просмотреть файл

@@ -215,12 +215,13 @@ class NMS(nn.Module):
conf = 0.25 # confidence threshold
iou = 0.45 # IoU threshold
classes = None # (optional list) filter by class
max_det = 1000 # maximum number of detections per image

def __init__(self):
super(NMS, self).__init__()

def forward(self, x):
return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
return non_max_suppression(x[0], self.conf, iou_thres=self.iou, classes=self.classes, max_det=self.max_det)


class AutoShape(nn.Module):
@@ -228,6 +229,7 @@ class AutoShape(nn.Module):
conf = 0.25 # NMS confidence threshold
iou = 0.45 # NMS IoU threshold
classes = None # (optional list) filter by class
max_det = 1000 # maximum number of detections per image

def __init__(self, model):
super(AutoShape, self).__init__()
@@ -285,7 +287,7 @@ class AutoShape(nn.Module):
t.append(time_synchronized())

# Post-process
y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
y = non_max_suppression(y, self.conf, iou_thres=self.iou, classes=self.classes, max_det=self.max_det) # NMS
for i in range(n):
scale_coords(shape1, y[i][:, :4], shape0[i])


+ 1
- 2
utils/general.py Просмотреть файл

@@ -482,7 +482,7 @@ def wh_iou(wh1, wh2):


def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
labels=()):
labels=(), max_det=300):
"""Runs Non-Maximum Suppression (NMS) on inference results

Returns:
@@ -498,7 +498,6 @@ def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=Non

# Settings
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
max_det = 300 # maximum number of detections per image
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
time_limit = 10.0 # seconds to quit after
redundant = True # require redundant detections

Загрузка…
Отмена
Сохранить