* Added max_det parameters in various places * 120 character line * PEP8 * 120 character line * Update inference default to 1000 instances * Update inference default to 1000 instances Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>modifyDataloader
@@ -68,7 +68,8 @@ def detect(opt): | |||
pred = model(img, augment=opt.augment)[0] | |||
# Apply NMS | |||
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) | |||
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, opt.classes, opt.agnostic_nms, | |||
max_det=opt.max_det) | |||
t2 = time_synchronized() | |||
# Apply Classifier | |||
@@ -153,6 +154,7 @@ if __name__ == '__main__': | |||
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') | |||
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold') | |||
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS') | |||
parser.add_argument('--max-det', type=int, default=1000, help='maximum number of detections per image') | |||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |||
parser.add_argument('--view-img', action='store_true', help='display results') | |||
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') |
@@ -215,12 +215,13 @@ class NMS(nn.Module): | |||
conf = 0.25 # confidence threshold | |||
iou = 0.45 # IoU threshold | |||
classes = None # (optional list) filter by class | |||
max_det = 1000 # maximum number of detections per image | |||
def __init__(self): | |||
super(NMS, self).__init__() | |||
def forward(self, x): | |||
return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) | |||
return non_max_suppression(x[0], self.conf, iou_thres=self.iou, classes=self.classes, max_det=self.max_det) | |||
class AutoShape(nn.Module): | |||
@@ -228,6 +229,7 @@ class AutoShape(nn.Module): | |||
conf = 0.25 # NMS confidence threshold | |||
iou = 0.45 # NMS IoU threshold | |||
classes = None # (optional list) filter by class | |||
max_det = 1000 # maximum number of detections per image | |||
def __init__(self, model): | |||
super(AutoShape, self).__init__() | |||
@@ -285,7 +287,7 @@ class AutoShape(nn.Module): | |||
t.append(time_synchronized()) | |||
# Post-process | |||
y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS | |||
y = non_max_suppression(y, self.conf, iou_thres=self.iou, classes=self.classes, max_det=self.max_det) # NMS | |||
for i in range(n): | |||
scale_coords(shape1, y[i][:, :4], shape0[i]) | |||
@@ -482,7 +482,7 @@ def wh_iou(wh1, wh2): | |||
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False, | |||
labels=()): | |||
labels=(), max_det=300): | |||
"""Runs Non-Maximum Suppression (NMS) on inference results | |||
Returns: | |||
@@ -498,7 +498,6 @@ def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=Non | |||
# Settings | |||
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height | |||
max_det = 300 # maximum number of detections per image | |||
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms() | |||
time_limit = 10.0 # seconds to quit after | |||
redundant = True # require redundant detections |