|
|
@@ -58,17 +58,24 @@ def check_anchors(dataset, model, thr=4.0, imgsz=640): |
|
|
|
anchors = model.module.model[-1].anchor_grid if hasattr(model, 'module') else model.model[-1].anchor_grid |
|
|
|
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True) |
|
|
|
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])).float() # wh |
|
|
|
ratio = wh[:, None] / anchors.view(-1, 2).cpu()[None] # ratio |
|
|
|
m = torch.max(ratio, 1. / ratio).max(2)[0] # max ratio |
|
|
|
bpr = (m.min(1)[0] < thr).float().mean() # best possible recall |
|
|
|
# mr = (m < thr).float().mean() # match ratio |
|
|
|
|
|
|
|
def metric(k): # compute metric |
|
|
|
r = wh[:, None] / k[None] |
|
|
|
x = torch.min(r, 1. / r).min(2)[0] # ratio metric |
|
|
|
best = x.max(1)[0] # best_x |
|
|
|
return (best > 1. / thr).float().mean() # best possible recall |
|
|
|
|
|
|
|
bpr = metric(anchors.clone().cpu().view(-1, 2)) |
|
|
|
print('Best Possible Recall (BPR) = %.3f' % bpr, end='') |
|
|
|
if bpr < 0.99: # threshold to recompute |
|
|
|
print('. Generating new anchors for improved recall, please wait...' % bpr) |
|
|
|
print('. Attempting to generate improved anchors, please wait...' % bpr) |
|
|
|
new_anchors = kmean_anchors(dataset, n=9, img_size=640, thr=4.0, gen=1000, verbose=False) |
|
|
|
anchors[:] = torch.tensor(new_anchors).view_as(anchors).type_as(anchors) |
|
|
|
print('New anchors saved to model. Update model *.yaml to use these anchors in the future.') |
|
|
|
new_bpr = metric(new_anchors.reshape(-1, 2)) |
|
|
|
if new_bpr > bpr: |
|
|
|
anchors[:] = torch.tensor(new_anchors).view_as(anchors).type_as(anchors) |
|
|
|
print('New anchors saved to model. Update model *.yaml to use these anchors in the future.') |
|
|
|
else: |
|
|
|
print('Original anchors better than new anchors. Proceeding with original anchors.') |
|
|
|
print('') # newline |
|
|
|
|
|
|
|
|
|
|
@@ -712,19 +719,19 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10 |
|
|
|
""" |
|
|
|
thr = 1. / thr |
|
|
|
|
|
|
|
def metric(k): # compute metrics |
|
|
|
def metric(k, wh): # compute metrics |
|
|
|
r = wh[:, None] / k[None] |
|
|
|
x = torch.min(r, 1. / r).min(2)[0] # ratio metric |
|
|
|
# x = wh_iou(wh, torch.tensor(k)) # iou metric |
|
|
|
return x, x.max(1)[0] # x, best_x |
|
|
|
|
|
|
|
def fitness(k): # mutation fitness |
|
|
|
_, best = metric(torch.tensor(k, dtype=torch.float32)) |
|
|
|
_, best = metric(torch.tensor(k, dtype=torch.float32), wh) |
|
|
|
return (best * (best > thr).float()).mean() # fitness |
|
|
|
|
|
|
|
def print_results(k): |
|
|
|
k = k[np.argsort(k.prod(1))] # sort small to large |
|
|
|
x, best = metric(k) |
|
|
|
x, best = metric(k, wh0) |
|
|
|
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr |
|
|
|
print('thr=%.2f: %.3f best possible recall, %.2f anchors past thr' % (thr, bpr, aat)) |
|
|
|
print('n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thr=%.3f-mean: ' % |
|
|
@@ -743,8 +750,14 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10 |
|
|
|
|
|
|
|
# Get label wh |
|
|
|
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True) |
|
|
|
wh = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh |
|
|
|
wh = wh[(wh > 2.0).all(1)] # filter > 2 pixels |
|
|
|
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh |
|
|
|
|
|
|
|
# Filter |
|
|
|
i = (wh0 < 4.0).any(1).sum() |
|
|
|
if i: |
|
|
|
print('WARNING: Extremely small objects found. ' |
|
|
|
'%g of %g labels are < 4 pixels in width or height.' % (i, len(wh0))) |
|
|
|
wh = wh0[(wh0 >= 4.0).any(1)] # filter > 2 pixels |
|
|
|
|
|
|
|
# Kmeans calculation |
|
|
|
from scipy.cluster.vq import kmeans |
|
|
@@ -752,7 +765,8 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10 |
|
|
|
s = wh.std(0) # sigmas for whitening |
|
|
|
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance |
|
|
|
k *= s |
|
|
|
wh = torch.tensor(wh, dtype=torch.float32) |
|
|
|
wh = torch.tensor(wh, dtype=torch.float32) # filtered |
|
|
|
wh0 = torch.tensor(wh0, dtype=torch.float32) # unflitered |
|
|
|
k = print_results(k) |
|
|
|
|
|
|
|
# Plot |
|
|
@@ -781,8 +795,8 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10 |
|
|
|
f, k = fg, kg.copy() |
|
|
|
if verbose: |
|
|
|
print_results(k) |
|
|
|
k = print_results(k) |
|
|
|
return k |
|
|
|
|
|
|
|
return print_results(k) |
|
|
|
|
|
|
|
|
|
|
|
def print_mutation(hyp, results, bucket=''): |
|
|
@@ -1099,6 +1113,7 @@ def plot_labels(labels): |
|
|
|
ax[2].set_xlabel('width') |
|
|
|
ax[2].set_ylabel('height') |
|
|
|
plt.savefig('labels.png', dpi=200) |
|
|
|
plt.close() |
|
|
|
|
|
|
|
|
|
|
|
def plot_evolution_results(hyp): # from utils.utils import *; plot_evolution_results(hyp) |