Browse Source

Merge pull request #1 from ultralytics/master

Master
5.0
Laughing GitHub 4 years ago
parent
commit
41ab1b23f1
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 272 additions and 188 deletions
  1. +13
    -0
      .github/ISSUE_TEMPLATE/-question.md
  2. +6
    -2
      README.md
  3. +13
    -16
      detect.py
  4. +32
    -0
      models/experimental.py
  5. +2
    -1
      models/export.py
  6. +3
    -2
      models/yolo.py
  7. +1
    -1
      requirements.txt
  8. +19
    -24
      test.py
  9. +59
    -48
      train.py
  10. +67
    -67
      utils/datasets.py
  11. +32
    -19
      utils/torch_utils.py
  12. +25
    -8
      utils/utils.py

+ 13
- 0
.github/ISSUE_TEMPLATE/-question.md View File

@@ -0,0 +1,13 @@
---
name: "❓Question"
about: Ask a general question
title: ''
labels: question
assignees: ''

---

## ❔Question


## Additional context

+ 6
- 2
README.md View File

@@ -41,9 +41,13 @@ $ pip install -U -r requirements.txt
## Tutorials

* [Notebook](https://github.com/ultralytics/yolov5/blob/master/tutorial.ipynb) <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
* [Kaggle](https://www.kaggle.com/ultralytics/yolov5-tutorial)
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)
* [Google Cloud Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
* [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) ![Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)
* [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251)
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Google Cloud Quickstart](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
* [Docker Quickstart](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) ![Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker)


## Inference

+ 13
- 16
detect.py View File

@@ -2,7 +2,7 @@ import argparse

import torch.backends.cudnn as cudnn

from utils import google_utils
from models.experimental import *
from utils.datasets import *
from utils.utils import *

@@ -20,12 +20,8 @@ def detect(save_img=False):
half = device.type != 'cpu' # half precision only supported on CUDA

# Load model
google_utils.attempt_download(weights)
model = torch.load(weights, map_location=device)['model'].float() # load to FP32
# torch.save(torch.load(weights, map_location=device), weights) # update model if SourceChangeWarning
# model.fuse()
model.to(device).eval()
imgsz = check_img_size(imgsz, s=model.model[-1].stride.max()) # check img_size
model = attempt_load(weights, map_location=device) # load FP32 model
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
if half:
model.half() # to FP16

@@ -123,10 +119,11 @@ def detect(save_img=False):
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer

fourcc = 'mp4v' # output video codec
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
vid_writer.write(im0)

if save_txt or save_img:
@@ -139,26 +136,26 @@ def detect(save_img=False):

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='weights/yolov5s.pt', help='model.pt path')
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
parser.add_argument('--output', type=str, default='inference/output', help='output folder') # output folder
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
opt = parser.parse_args()
print(opt)

with torch.no_grad():
detect()
# # Update all models
# for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']:
# detect()
# create_pretrained(opt.weights, opt.weights)
if opt.update: # update all models (to fix SourceChangeWarning)
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']:
detect()
create_pretrained(opt.weights, opt.weights)
else:
detect()

+ 32
- 0
models/experimental.py View File

@@ -1,6 +1,7 @@
# This file contains experimental modules

from models.common import *
from utils import google_utils


class CrossConv(nn.Module):
@@ -107,3 +108,34 @@ class MixConv2d(nn.Module):

def forward(self, x):
return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))


class Ensemble(nn.ModuleList):
# Ensemble of models
def __init__(self):
super(Ensemble, self).__init__()

def forward(self, x, augment=False):
y = []
for module in self:
y.append(module(x, augment)[0])
# y = torch.stack(y).max(0)[0] # max ensemble
# y = torch.cat(y, 1) # nms ensemble
y = torch.stack(y).mean(0) # mean ensemble
return y, None # inference, train output


def attempt_load(weights, map_location=None):
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
model = Ensemble()
for w in weights if isinstance(weights, list) else [weights]:
google_utils.attempt_download(w)
model.append(torch.load(w, map_location=map_location)['model'].float().fuse().eval()) # load FP32 model

if len(model) == 1:
return model[-1] # return model
else:
print('Ensemble created with %s\n' % weights)
for k in ['names', 'stride']:
setattr(model, k, getattr(model[-1], k))
return model # return ensemble

+ 2
- 1
models/export.py View File

@@ -61,7 +61,8 @@ if __name__ == '__main__':
import coremltools as ct

print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
model = ct.convert(ts, inputs=[ct.ImageType(name='images', shape=img.shape)]) # convert
# convert model from torchscript and apply pixel scaling as per detect.py
model = ct.convert(ts, inputs=[ct.ImageType(name='images', shape=img.shape, scale=1/255.0, bias=[0, 0, 0])])
f = opt.weights.replace('.pt', '.mlmodel') # filename
model.save(f)
print('CoreML export success, saved as %s' % f)

+ 3
- 2
models/yolo.py View File

@@ -48,6 +48,7 @@ class Model(nn.Module):
if type(model_cfg) is dict:
self.md = model_cfg # model dict
else: # is *.yaml
import yaml # for torch hub
with open(model_cfg) as f:
self.md = yaml.load(f, Loader=yaml.FullLoader) # model dict

@@ -141,14 +142,14 @@ class Model(nn.Module):
# print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights

def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
print('Fusing layers...')
print('Fusing layers... ', end='')
for m in self.model.modules():
if type(m) is Conv:
m.conv = torch_utils.fuse_conv_and_bn(m.conv, m.bn) # update conv
m.bn = None # remove batchnorm
m.forward = m.fuseforward # update forward
torch_utils.model_info(self)
return self

def parse_model(md, ch): # model_dict, input_channels(3)
print('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))

+ 1
- 1
requirements.txt View File

@@ -2,7 +2,7 @@
Cython
numpy==1.17
opencv-python
torch>=1.4
torch>=1.5.1
matplotlib
pillow
tensorboard

+ 19
- 24
test.py View File

@@ -1,9 +1,8 @@
import argparse
import json

from utils import google_utils
from models.experimental import *
from utils.datasets import *
from utils.utils import *


def test(data,
@@ -18,32 +17,29 @@ def test(data,
verbose=False,
model=None,
dataloader=None,
save_dir='',
merge=False):
# Initialize/load model and set device
if model is None:
training = False
training = model is not None
if training: # called by train.py
device = next(model.parameters()).device # get model device

else: # called directly
device = torch_utils.select_device(opt.device, batch_size=batch_size)
merge = opt.merge # use Merge NMS

# Remove previous
for f in glob.glob('test_batch*.jpg'):
for f in glob.glob(str(Path(save_dir) / 'test_batch*.jpg')):
os.remove(f)

# Load model
google_utils.attempt_download(weights)
model = torch.load(weights, map_location=device)['model'].float() # load to FP32
torch_utils.model_info(model)
model.fuse()
model.to(device)
imgsz = check_img_size(imgsz, s=model.model[-1].stride.max()) # check img_size
model = attempt_load(weights, map_location=device) # load FP32 model
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size

# Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
# if device.type != 'cpu' and torch.cuda.device_count() > 1:
# model = nn.DataParallel(model)

else: # called by train.py
training = True
device = next(model.parameters()).device # get model device

# Half
half = device.type != 'cpu' and torch.cuda.device_count() == 1 # half precision only supported on single-GPU
if half:
@@ -58,12 +54,11 @@ def test(data,
niou = iouv.numel()

# Dataloader
if dataloader is None: # not training
merge = opt.merge # use Merge NMS
if not training:
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images
dataloader = create_dataloader(path, imgsz, batch_size, int(max(model.stride)), opt,
dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt,
hyp=None, augment=False, cache=False, pad=0.5, rect=True)[0]

seen = 0
@@ -163,10 +158,10 @@ def test(data,

# Plot images
if batch_i < 1:
f = 'test_batch%g_gt.jpg' % batch_i # filename
plot_images(img, targets, paths, f, names) # ground truth
f = 'test_batch%g_pred.jpg' % batch_i
plot_images(img, output_to_target(output, width, height), paths, f, names) # predictions
f = Path(save_dir) / ('test_batch%g_gt.jpg' % batch_i) # filename
plot_images(img, targets, paths, str(f), names) # ground truth
f = Path(save_dir) / ('test_batch%g_pred.jpg' % batch_i)
plot_images(img, output_to_target(output, width, height), paths, str(f), names) # predictions

# Compute statistics
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
@@ -196,7 +191,7 @@ def test(data,
if save_json and map50 and len(jdict):
imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataloader.dataset.img_files]
f = 'detections_val2017_%s_results.json' % \
(weights.split(os.sep)[-1].replace('.pt', '') if weights else '') # filename
(weights.split(os.sep)[-1].replace('.pt', '') if isinstance(weights, str) else '') # filename
print('\nCOCO mAP with pycocotools... saving %s...' % f)
with open(f, 'w') as file:
json.dump(jdict, file)
@@ -229,7 +224,7 @@ def test(data,

if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument('--weights', type=str, default='weights/yolov5s.pt', help='model.pt path')
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')

+ 59
- 48
train.py View File

@@ -20,15 +20,10 @@ except:
print('Apex recommended for faster mixed precision training: https://github.com/NVIDIA/apex')
mixed_precision = False # not installed

wdir = 'weights' + os.sep # weights dir
os.makedirs(wdir, exist_ok=True)
last = wdir + 'last.pt'
best = wdir + 'best.pt'
results_file = 'results.txt'

# Hyperparameters
hyp = {'lr0': 0.01, # initial learning rate (SGD=1E-2, Adam=1E-3)
'momentum': 0.937, # SGD momentum
hyp = {'optimizer': 'SGD', # ['adam', 'SGD', None] if none, default is SGD
'lr0': 0.01, # initial learning rate (SGD=1E-2, Adam=1E-3)
'momentum': 0.937, # SGD momentum/Adam beta1
'weight_decay': 5e-4, # optimizer weight decay
'giou': 0.05, # giou loss gain
'cls': 0.58, # cls loss gain
@@ -45,21 +40,24 @@ hyp = {'lr0': 0.01, # initial learning rate (SGD=1E-2, Adam=1E-3)
'translate': 0.0, # image translation (+/- fraction)
'scale': 0.5, # image scale (+/- gain)
'shear': 0.0} # image shear (+/- deg)
print(hyp)

# Overwrite hyp with hyp*.txt (optional)
f = glob.glob('hyp*.txt')
if f:
print('Using %s' % f[0])
for k, v in zip(hyp.keys(), np.loadtxt(f[0])):
hyp[k] = v

# Print focal loss if gamma > 0
if hyp['fl_gamma']:
print('Using FocalLoss(gamma=%g)' % hyp['fl_gamma'])
def train(hyp):
print(f'Hyperparameters {hyp}')
log_dir = tb_writer.log_dir # run directory
wdir = str(Path(log_dir) / 'weights') + os.sep # weights directory

os.makedirs(wdir, exist_ok=True)
last = wdir + 'last.pt'
best = wdir + 'best.pt'
results_file = log_dir + os.sep + 'results.txt'

# Save run settings
with open(Path(log_dir) / 'hyp.yaml', 'w') as f:
yaml.dump(hyp, f, sort_keys=False)
with open(Path(log_dir) / 'opt.yaml', 'w') as f:
yaml.dump(vars(opt), f, sort_keys=False)

def train(hyp):
epochs = opt.epochs # 300
batch_size = opt.batch_size # 64
weights = opt.weights # initial training weights
@@ -70,14 +68,15 @@ def train(hyp):
data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict
train_path = data_dict['train']
test_path = data_dict['val']
nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names']) # number classes, names
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check

# Remove previous results
for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
os.remove(f)

# Create model
model = Model(opt.cfg, nc=data_dict['nc']).to(device)
model = Model(opt.cfg, nc=nc).to(device)

# Image sizes
gs = int(max(model.stride)) # grid size (max stride)
@@ -97,15 +96,20 @@ def train(hyp):
else:
pg0.append(v) # all else

optimizer = optim.Adam(pg0, lr=hyp['lr0']) if opt.adam else \
optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
if hyp['optimizer'] == 'adam': # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
else:
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)

optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
del pg0, pg1, pg2

# Scheduler https://arxiv.org/pdf/1812.01187.pdf
lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.9 + 0.1 # cosine
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
del pg0, pg1, pg2
# plot_lr_scheduler(optimizer, scheduler, epochs, save_dir=log_dir)

# Load Model
google_utils.attempt_download(weights)
@@ -147,12 +151,7 @@ def train(hyp):
if mixed_precision:
model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)


scheduler.last_epoch = start_epoch - 1 # do not move
# https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822
# plot_lr_scheduler(optimizer, scheduler, epochs)

# Initialize distributed training
# Distributed training
if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available():
dist.init_process_group(backend='nccl', # distributed backend
init_method='tcp://127.0.0.1:9999', # init method
@@ -165,6 +164,7 @@ def train(hyp):
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect)
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
nb = len(dataloader) # number of batches
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Correct your labels or your model.' % (mlc, nc, opt.cfg)

# Testloader
@@ -177,15 +177,15 @@ def train(hyp):
model.hyp = hyp # attach hyperparameters to model
model.gr = 1.0 # giou loss ratio (obj_loss = 1.0 or giou)
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
model.names = data_dict['names']
model.names = names

# Class frequency
labels = np.concatenate(dataset.labels, 0)
c = torch.tensor(labels[:, 0]) # classes
# cf = torch.bincount(c.long(), minlength=nc) + 1.
# model._initialize_biases(cf.to(device))
plot_labels(labels, save_dir=log_dir)
if tb_writer:
plot_labels(labels)
tb_writer.add_histogram('classes', c, 0)

# Check anchors
@@ -193,14 +193,14 @@ def train(hyp):
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)

# Exponential moving average
ema = torch_utils.ModelEMA(model)
ema = torch_utils.ModelEMA(model, updates=start_epoch * nb / accumulate)

# Start training
t0 = time.time()
nb = len(dataloader) # number of batches
n_burn = max(3 * nb, 1e3) # burn-in iterations, max(3 epochs, 1k iterations)
nw = max(3 * nb, 1e3) # number of warmup iterations, max(3 epochs, 1k iterations)
maps = np.zeros(nc) # mAP per class
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
scheduler.last_epoch = start_epoch - 1 # do not move
print('Image sizes %g train, %g test' % (imgsz, imgsz_test))
print('Using %g dataloader workers' % dataloader.num_workers)
print('Starting training for %g epochs...' % epochs)
@@ -225,9 +225,9 @@ def train(hyp):
ni = i + nb * epoch # number integrated batches (since train start)
imgs = imgs.to(device).float() / 255.0 # uint8 to float32, 0 - 255 to 0.0 - 1.0

# Burn-in
if ni <= n_burn:
xi = [0, n_burn] # x interp
# Warmup
if ni <= nw:
xi = [0, nw] # x interp
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou)
accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
for j, x in enumerate(optimizer.param_groups):
@@ -275,7 +275,7 @@ def train(hyp):

# Plot
if ni < 3:
f = 'train_batch%g.jpg' % ni # filename
f = str(Path(log_dir) / ('train_batch%g.jpg' % ni)) # filename
result = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
if tb_writer and result is not None:
tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
@@ -296,7 +296,8 @@ def train(hyp):
save_json=final_epoch and opt.data.endswith(os.sep + 'coco.yaml'),
model=ema.ema,
single_cls=opt.single_cls,
dataloader=testloader)
dataloader=testloader,
save_dir=log_dir)

# Write
with open(results_file, 'a') as f:
@@ -348,7 +349,7 @@ def train(hyp):

# Finish
if not opt.evolve:
plot_results() # save as results.png
plot_results(save_dir=log_dir) # save as results.png
print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
dist.destroy_process_group() if device.type != 'cpu' and torch.cuda.device_count() > 1 else None
torch.cuda.empty_cache()
@@ -358,13 +359,15 @@ def train(hyp):
if __name__ == '__main__':
check_git_status()
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='model.yaml path')
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
parser.add_argument('--hyp', type=str, default='', help='hyp.yaml path (optional)')
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--batch-size', type=int, default=16)
parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='*.cfg path')
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', action='store_true', help='resume training from last.pt')
parser.add_argument('--resume', nargs='?', const='get_last', default=False,
help='resume from given path/to/last.pt, or most recent run if blank.')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--notest', action='store_true', help='only test final epoch')
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
@@ -374,13 +377,17 @@ if __name__ == '__main__':
parser.add_argument('--weights', type=str, default='', help='initial weights path')
parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--adam', action='store_true', help='use adam optimizer')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
opt = parser.parse_args()

last = get_latest_run() if opt.resume == 'get_last' else opt.resume # resume from most recent run
if last and not opt.weights:
print(f'Resuming training from {last}')
opt.weights = last if opt.resume and not opt.weights else opt.weights
opt.cfg = check_file(opt.cfg) # check file
opt.data = check_file(opt.data) # check file
opt.hyp = check_file(opt.hyp) if opt.hyp else '' # check file
print(opt)
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)
@@ -389,8 +396,12 @@ if __name__ == '__main__':

# Train
if not opt.evolve:
tb_writer = SummaryWriter(comment=opt.name)
print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')
tb_writer = SummaryWriter(log_dir=increment_dir('runs/exp', opt.name))
if opt.hyp: # update hyps
with open(opt.hyp) as f:
hyp.update(yaml.load(f, Loader=yaml.FullLoader))

train(hyp)

# Evolve hyperparameters (optional)

+ 67
- 67
utils/datasets.py View File

@@ -26,6 +26,11 @@ for orientation in ExifTags.TAGS.keys():
break


def get_hash(files):
# Returns a single hash value of a list of files
return sum(os.path.getsize(f) for f in files)


def exif_size(img):
# Returns exif-corrected PIL size
s = img.size # (width, height)
@@ -48,7 +53,7 @@ def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=Fa
rect=rect, # rectangular training
cache_images=cache,
single_cls=opt.single_cls,
stride=stride,
stride=int(stride),
pad=pad)

batch_size = min(batch_size, len(dataset))
@@ -280,19 +285,21 @@ class LoadImagesAndLabels(Dataset): # for training/testing
def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
cache_images=False, single_cls=False, stride=32, pad=0.0):
try:
path = str(Path(path)) # os-agnostic
parent = str(Path(path).parent) + os.sep
if os.path.isfile(path): # file
with open(path, 'r') as f:
f = f.read().splitlines()
f = [x.replace('./', parent) if x.startswith('./') else x for x in f] # local to global path
elif os.path.isdir(path): # folder
f = glob.iglob(path + os.sep + '*.*')
else:
raise Exception('%s does not exist' % path)
f = [] # image files
for p in path if isinstance(path, list) else [path]:
p = str(Path(p)) # os-agnostic
parent = str(Path(p).parent) + os.sep
if os.path.isfile(p): # file
with open(p, 'r') as t:
t = t.read().splitlines()
f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
elif os.path.isdir(p): # folder
f += glob.iglob(p + os.sep + '*.*')
else:
raise Exception('%s does not exist' % p)
self.img_files = [x.replace('/', os.sep) for x in f if os.path.splitext(x)[-1].lower() in img_formats]
except:
raise Exception('Error loading data from %s. See %s' % (path, help_url))
except Exception as e:
raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url))

n = len(self.img_files)
assert n > 0, 'No images found in %s. See %s' % (path, help_url)
@@ -311,20 +318,22 @@ class LoadImagesAndLabels(Dataset): # for training/testing
self.stride = stride

# Define labels
self.label_files = [x.replace('images', 'labels').replace(os.path.splitext(x)[-1], '.txt')
for x in self.img_files]

# Read image shapes (wh)
sp = path.replace('.txt', '') + '.shapes' # shapefile path
try:
with open(sp, 'r') as f: # read existing shapefile
s = [x.split() for x in f.read().splitlines()]
assert len(s) == n, 'Shapefile out of sync'
except:
s = [exif_size(Image.open(f)) for f in tqdm(self.img_files, desc='Reading image shapes')]
np.savetxt(sp, s, fmt='%g') # overwrites existing (if any)
self.label_files = [x.replace('images', 'labels').replace(os.path.splitext(x)[-1], '.txt') for x in
self.img_files]

# Check cache
cache_path = str(Path(self.label_files[0]).parent) + '.cache' # cached labels
if os.path.isfile(cache_path):
cache = torch.load(cache_path) # load
if cache['hash'] != get_hash(self.label_files + self.img_files): # dataset changed
cache = self.cache_labels(cache_path) # re-cache
else:
cache = self.cache_labels(cache_path) # cache

self.shapes = np.array(s, dtype=np.float64)
# Get labels
labels, shapes = zip(*[cache[x] for x in self.img_files])
self.shapes = np.array(shapes, dtype=np.float64)
self.labels = list(labels)

# Rectangular Training https://github.com/ultralytics/yolov3/issues/232
if self.rect:
@@ -350,33 +359,11 @@ class LoadImagesAndLabels(Dataset): # for training/testing
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride

# Cache labels
self.imgs = [None] * n
self.labels = [np.zeros((0, 5), dtype=np.float32)] * n
create_datasubset, extract_bounding_boxes, labels_loaded = False, False, False
nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate
np_labels_path = str(Path(self.label_files[0]).parent) + '.npy' # saved labels in *.npy file
if os.path.isfile(np_labels_path):
s = np_labels_path # print string
x = np.load(np_labels_path, allow_pickle=True)
if len(x) == n:
self.labels = x
labels_loaded = True
else:
s = path.replace('images', 'labels')

pbar = tqdm(self.label_files)
for i, file in enumerate(pbar):
if labels_loaded:
l = self.labels[i]
# np.savetxt(file, l, '%g') # save *.txt from *.npy file
else:
try:
with open(file, 'r') as f:
l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
except:
nm += 1 # print('missing labels for image %s' % self.img_files[i]) # file missing
continue

l = self.labels[i] # label
if l.shape[0]:
assert l.shape[1] == 5, '> 5 label columns: %s' % file
assert (l >= 0).all(), 'negative labels: %s' % file
@@ -422,15 +409,13 @@ class LoadImagesAndLabels(Dataset): # for training/testing
ne += 1 # print('empty labels for image %s' % self.img_files[i]) # file empty
# os.system("rm '%s' '%s'" % (self.img_files[i], self.label_files[i])) # remove

pbar.desc = 'Caching labels %s (%g found, %g missing, %g empty, %g duplicate, for %g images)' % (
s, nf, nm, ne, nd, n)
assert nf > 0 or n == 20288, 'No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url)
if not labels_loaded and n > 1000:
print('Saving labels to %s for faster future loading' % np_labels_path)
np.save(np_labels_path, self.labels) # save for next time
pbar.desc = 'Scanning labels %s (%g found, %g missing, %g empty, %g duplicate, for %g images)' % (
cache_path, nf, nm, ne, nd, n)
assert nf > 0, 'No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url)

# Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
if cache_images: # if training
self.imgs = [None] * n
if cache_images:
gb = 0 # Gigabytes of cached images
pbar = tqdm(range(len(self.img_files)), desc='Caching images')
self.img_hw0, self.img_hw = [None] * n, [None] * n
@@ -439,15 +424,30 @@ class LoadImagesAndLabels(Dataset): # for training/testing
gb += self.imgs[i].nbytes
pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)

# Detect corrupted images https://medium.com/joelthchao/programmatically-detect-corrupted-image-8c1b2006c3d3
detect_corrupted_images = False
if detect_corrupted_images:
from skimage import io # conda install -c conda-forge scikit-image
for file in tqdm(self.img_files, desc='Detecting corrupted images'):
try:
_ = io.imread(file)
except:
print('Corrupted image detected: %s' % file)
def cache_labels(self, path='labels.cache'):
# Cache dataset labels, check images and read shapes
x = {} # dict
pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
for (img, label) in pbar:
try:
l = []
image = Image.open(img)
image.verify() # PIL verify
# _ = io.imread(img) # skimage verify (from skimage import io)
shape = exif_size(image) # image size
if os.path.isfile(label):
with open(label, 'r') as f:
l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) # labels
if len(l) == 0:
l = np.zeros((0, 5), dtype=np.float32)
x[img] = [l, shape]
except Exception as e:
x[img] = None
print('WARNING: %s: %s' % (img, e))

x['hash'] = get_hash(self.label_files + self.img_files)
torch.save(x, path) # save for next time
return x

def __len__(self):
return len(self.img_files)
@@ -679,8 +679,8 @@ def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scale
dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding
elif scaleFill: # stretch
dw, dh = 0.0, 0.0
new_unpad = new_shape
ratio = new_shape[0] / shape[1], new_shape[1] / shape[0] # width, height ratios
new_unpad = (new_shape[1], new_shape[0])
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios

dw /= 2 # divide padding into 2 sides
dh /= 2

+ 32
- 19
utils/torch_utils.py View File

@@ -76,16 +76,36 @@ def find_modules(model, mclass=nn.Conv2d):
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]


def sparsity(model):
# Return global model sparsity
a, b = 0., 0.
for p in model.parameters():
a += p.numel()
b += (p == 0).sum()
return b / a


def prune(model, amount=0.3):
# Prune model to requested global sparsity
import torch.nn.utils.prune as prune
print('Pruning model... ', end='')
for name, m in model.named_modules():
if isinstance(m, nn.Conv2d):
prune.l1_unstructured(m, name='weight', amount=amount) # prune
prune.remove(m, 'weight') # make permanent
print(' %.3g global sparsity' % sparsity(model))


def fuse_conv_and_bn(conv, bn):
# https://tehnokv.com/posts/fusing-batchnorm-and-conv/
with torch.no_grad():
# init
fusedconv = torch.nn.Conv2d(conv.in_channels,
conv.out_channels,
kernel_size=conv.kernel_size,
stride=conv.stride,
padding=conv.padding,
bias=True)
fusedconv = nn.Conv2d(conv.in_channels,
conv.out_channels,
kernel_size=conv.kernel_size,
stride=conv.stride,
padding=conv.padding,
bias=True).to(conv.weight.device)

# prepare filters
w_conv = conv.weight.clone().view(conv.out_channels, -1)
@@ -93,10 +113,7 @@ def fuse_conv_and_bn(conv, bn):
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))

# prepare spatial bias
if conv.bias is not None:
b_conv = conv.bias
else:
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device)
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)

@@ -139,8 +156,8 @@ def load_classifier(name='resnet101', n=2):

# Reshape output to n classes
filters = model.fc.weight.shape[1]
model.fc.bias = torch.nn.Parameter(torch.zeros(n), requires_grad=True)
model.fc.weight = torch.nn.Parameter(torch.zeros(n, filters), requires_grad=True)
model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
model.fc.out_features = n
return model

@@ -174,15 +191,11 @@ class ModelEMA:
I've tested with the sequence in my own train.py for torch.DataParallel, apex.DDP, and single-GPU.
"""

def __init__(self, model, decay=0.9999, device=''):
def __init__(self, model, decay=0.9999, updates=0):
# Create EMA
self.ema = deepcopy(model.module if is_parallel(model) else model) # FP32 EMA
self.ema.eval()
self.updates = 0 # number of EMA updates
self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
self.updates = updates # number of EMA updates
self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
self.device = device # perform ema on different device from model if set
if device:
self.ema.to(device)
for p in self.ema.parameters():
p.requires_grad_(False)


+ 25
- 8
utils/utils.py View File

@@ -37,6 +37,12 @@ def init_seeds(seed=0):
torch_utils.init_seeds(seed=seed)


def get_latest_run(search_dir='./runs'):
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
return max(last_list, key=os.path.getctime)


def check_git_status():
# Suggest 'git pull' if repo is out of date
if platform in ['linux', 'darwin']:
@@ -173,7 +179,7 @@ def xywh2xyxy(x):
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
# Rescale coords (xyxy) from img1_shape to img0_shape
if ratio_pad is None: # calculate from img0_shape
gain = max(img1_shape) / max(img0_shape) # gain = old / new
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0][0]
@@ -898,6 +904,16 @@ def output_to_target(output, width, height):
return np.array(targets)


def increment_dir(dir, comment=''):
# Increments a directory runs/exp1 --> runs/exp2_comment
n = 0 # number
d = sorted(glob.glob(dir + '*')) # directories
if len(d):
d = d[-1].replace(dir, '')
n = int(d[:d.find('_')] if '_' in d else d) + 1 # increment
return dir + str(n) + ('_' + comment if comment else '')


# Plotting functions ---------------------------------------------------------------------------------------------------
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
@@ -1028,7 +1044,7 @@ def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max
return mosaic


def plot_lr_scheduler(optimizer, scheduler, epochs=300):
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
# Plot LR simulating training for full epochs
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
y = []
@@ -1042,7 +1058,7 @@ def plot_lr_scheduler(optimizer, scheduler, epochs=300):
plt.xlim(0, epochs)
plt.ylim(0)
plt.tight_layout()
plt.savefig('LR.png', dpi=200)
plt.savefig(Path(save_dir) / 'LR.png', dpi=200)


def plot_test_txt(): # from utils.utils import *; plot_test()
@@ -1107,7 +1123,7 @@ def plot_study_txt(f='study.txt', x=None): # from utils.utils import *; plot_st
plt.savefig(f.replace('.txt', '.png'), dpi=200)


def plot_labels(labels):
def plot_labels(labels, save_dir=''):
# plot dataset labels
c, b = labels[:, 0], labels[:, 1:].transpose() # classees, boxes

@@ -1128,7 +1144,7 @@ def plot_labels(labels):
ax[2].scatter(b[2], b[3], c=hist2d(b[2], b[3], 90), cmap='jet')
ax[2].set_xlabel('width')
ax[2].set_ylabel('height')
plt.savefig('labels.png', dpi=200)
plt.savefig(Path(save_dir) / 'labels.png', dpi=200)
plt.close()


@@ -1174,7 +1190,8 @@ def plot_results_overlay(start=0, stop=0): # from utils.utils import *; plot_re
fig.savefig(f.replace('.txt', '.png'), dpi=200)


def plot_results(start=0, stop=0, bucket='', id=(), labels=()): # from utils.utils import *; plot_results()
def plot_results(start=0, stop=0, bucket='', id=(), labels=(),
save_dir=''): # from utils.utils import *; plot_results()
# Plot training 'results*.txt' as seen in https://github.com/ultralytics/yolov5#reproduce-our-training
fig, ax = plt.subplots(2, 5, figsize=(12, 6))
ax = ax.ravel()
@@ -1184,7 +1201,7 @@ def plot_results(start=0, stop=0, bucket='', id=(), labels=()): # from utils.ut
os.system('rm -rf storage.googleapis.com')
files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
else:
files = glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')
files = glob.glob(str(Path(save_dir) / 'results*.txt')) + glob.glob('../../Downloads/results*.txt')
for fi, f in enumerate(files):
try:
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
@@ -1205,4 +1222,4 @@ def plot_results(start=0, stop=0, bucket='', id=(), labels=()): # from utils.ut

fig.tight_layout()
ax[1].legend()
fig.savefig('results.png', dpi=200)
fig.savefig(Path(save_dir) / 'results.png', dpi=200)

Loading…
Cancel
Save