|
|
@@ -18,11 +18,6 @@ except: |
|
|
|
print('Apex recommended for faster mixed precision training: https://github.com/NVIDIA/apex') |
|
|
|
mixed_precision = False # not installed |
|
|
|
|
|
|
|
wdir = 'weights' + os.sep # weights dir |
|
|
|
os.makedirs(wdir, exist_ok=True) |
|
|
|
last = wdir + 'last.pt' |
|
|
|
best = wdir + 'best.pt' |
|
|
|
results_file = 'results.txt' |
|
|
|
|
|
|
|
# Hyperparameters |
|
|
|
hyp = {'lr0': 0.01, # initial learning rate (SGD=1E-2, Adam=1E-3) |
|
|
@@ -59,13 +54,21 @@ if hyp['fl_gamma']: |
|
|
|
|
|
|
|
|
|
|
|
def train(hyp): |
|
|
|
#write all results to the tb log_dir, so all data from one run is together |
|
|
|
log_dir = tb_writer.log_dir |
|
|
|
|
|
|
|
#weights dir unique to each experiment |
|
|
|
wdir = os.path.join(log_dir, 'weights') + os.sep # weights dir |
|
|
|
|
|
|
|
os.makedirs(wdir, exist_ok=True) |
|
|
|
last = wdir + 'last.pt' |
|
|
|
best = wdir + 'best.pt' |
|
|
|
results_file = 'results.txt' |
|
|
|
|
|
|
|
epochs = opt.epochs # 300 |
|
|
|
batch_size = opt.batch_size # 64 |
|
|
|
weights = opt.weights # initial training weights |
|
|
|
|
|
|
|
#write all results to the tb log_dir, so all data from one run is together |
|
|
|
log_dir = tb_writer.log_dir |
|
|
|
|
|
|
|
# Configure |
|
|
|
init_seeds(1) |
|
|
|
with open(opt.data) as f: |