Pārlūkot izejas kodu

--resume to same runs/exp directory (#765)

* initial commit

* add weight backup dir on resume
5.0
Glenn Jocher GitHub pirms 4 gadiem
vecāks
revīzija
4447f4b937
Šim parakstam datu bāzē netika atrasta zināma atslēga GPG atslēgas ID: 4AEE18F83AFDEB23
1 mainītis faili ar 15 papildinājumiem un 11 dzēšanām
  1. +15
    -11
      train.py

+ 15
- 11
train.py Parādīt failu

@@ -1,9 +1,10 @@
import argparse
import logging
import math
import os
import random
import shutil
import time
import logging
from pathlib import Path

import numpy as np
@@ -34,10 +35,10 @@ logger = logging.getLogger(__name__)
def train(hyp, opt, device, tb_writer=None):
logger.info(f'Hyperparameters {hyp}')
log_dir = Path(tb_writer.log_dir) if tb_writer else Path(opt.logdir) / 'evolve' # logging directory
wdir = str(log_dir / 'weights') + os.sep # weights directory
wdir = log_dir / 'weights' # weights directory
os.makedirs(wdir, exist_ok=True)
last = wdir + 'last.pt'
best = wdir + 'best.pt'
last = wdir / 'last.pt'
best = wdir / 'best.pt'
results_file = str(log_dir / 'results.txt')
epochs, batch_size, total_batch_size, weights, rank = \
opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
@@ -131,6 +132,7 @@ def train(hyp, opt, device, tb_writer=None):
start_epoch = ckpt['epoch'] + 1
if opt.resume:
assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
shutil.copytree(wdir, wdir.parent / f'weights_backup_epoch{start_epoch - 1}') # save previous weights
if epochs < start_epoch:
logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
(weights, ckpt['epoch'], epochs))
@@ -365,13 +367,13 @@ def train(hyp, opt, device, tb_writer=None):
if rank in [-1, 0]:
# Strip optimizers
n = ('_' if len(opt.name) and not opt.name.isnumeric() else '') + opt.name
fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'], [flast, fbest, fresults]):
fresults, flast, fbest = 'results%s.txt' % n, wdir / f'last{n}.pt', wdir / f'best{n}.pt'
for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', 'results.txt'], [flast, fbest, fresults]):
if os.path.exists(f1):
os.rename(f1, f2) # rename
ispt = f2.endswith('.pt') # is *.pt
strip_optimizer(f2) if ispt else None # strip optimizer
os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket and ispt else None # upload
if str(f2).endswith('.pt'): # is *.pt
strip_optimizer(f2) # strip optimizer
os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket else None # upload
# Finish
if not opt.evolve:
plot_results(save_dir=log_dir) # save as results.png
@@ -421,8 +423,9 @@ if __name__ == '__main__':
# Resume
if opt.resume: # resume an interrupted run
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
log_dir = Path(ckpt).parent.parent # runs/exp0
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
with open(log_dir / 'opt.yaml') as f:
opt = argparse.Namespace(**yaml.load(f, Loader=yaml.FullLoader)) # replace
opt.cfg, opt.weights, opt.resume = '', ckpt, True
logger.info('Resuming training from %s' % ckpt)
@@ -432,6 +435,7 @@ if __name__ == '__main__':
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
log_dir = increment_dir(Path(opt.logdir) / 'exp', opt.name) # runs/exp1

device = select_device(opt.device, batch_size=opt.batch_size)

@@ -453,7 +457,7 @@ if __name__ == '__main__':
tb_writer = None
if opt.global_rank in [-1, 0]:
logger.info('Start Tensorboard with "tensorboard --logdir %s", view at http://localhost:6006/' % opt.logdir)
tb_writer = SummaryWriter(log_dir=increment_dir(Path(opt.logdir) / 'exp', opt.name)) # runs/exp
tb_writer = SummaryWriter(log_dir=log_dir) # runs/exp0

train(hyp, opt, device, tb_writer)


Notiek ielāde…
Atcelt
Saglabāt