* Increment train, test, detect runs/ * Update ci-testing.yml * inference/images to data/images * move images * runs/exp to runs/train/exp * update 'results saved to %s' str5.0
@@ -66,10 +66,10 @@ jobs: | |||
python train.py --img 256 --batch 8 --weights weights/${{ matrix.model }}.pt --cfg models/${{ matrix.model }}.yaml --epochs 1 --device $di | |||
# detect | |||
python detect.py --weights weights/${{ matrix.model }}.pt --device $di | |||
python detect.py --weights runs/exp0/weights/last.pt --device $di | |||
python detect.py --weights runs/train/exp0/weights/last.pt --device $di | |||
# test | |||
python test.py --img 256 --batch 8 --weights weights/${{ matrix.model }}.pt --device $di | |||
python test.py --img 256 --batch 8 --weights runs/exp0/weights/last.pt --device $di | |||
python test.py --img 256 --batch 8 --weights runs/train/exp0/weights/last.pt --device $di | |||
python models/yolo.py --cfg models/${{ matrix.model }}.yaml # inspect | |||
python models/export.py --img 256 --batch 1 --weights weights/${{ matrix.model }}.pt # export |
@@ -26,8 +26,8 @@ | |||
storage.googleapis.com | |||
runs/* | |||
data/* | |||
!data/samples/zidane.jpg | |||
!data/samples/bus.jpg | |||
!data/images/zidane.jpg | |||
!data/images/bus.jpg | |||
!data/coco.names | |||
!data/coco_paper.names | |||
!data/coco.data |
@@ -46,7 +46,7 @@ COPY . /usr/src/app | |||
# sudo docker commit 092b16b25c5b usr/resume && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco --entrypoint=sh usr/resume | |||
# Send weights to GCP | |||
# python -c "from utils.general import *; strip_optimizer('runs/exp0_*/weights/best.pt', 'tmp.pt')" && gsutil cp tmp.pt gs://*.pt | |||
# python -c "from utils.general import *; strip_optimizer('runs/train/exp0_*/weights/best.pt', 'tmp.pt')" && gsutil cp tmp.pt gs://*.pt | |||
# Clean up | |||
# docker system prune -a --volumes |
@@ -70,7 +70,7 @@ YOLOv5 may be run in any of the following up-to-date verified environments (with | |||
## Inference | |||
detect.py runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `inference/output`. | |||
detect.py runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`. | |||
```bash | |||
$ python detect.py --source 0 # webcam | |||
file.jpg # image | |||
@@ -82,20 +82,20 @@ $ python detect.py --source 0 # webcam | |||
http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream | |||
``` | |||
To run inference on example images in `inference/images`: | |||
To run inference on example images in `data/images`: | |||
```bash | |||
$ python detect.py --source inference/images --weights yolov5s.pt --conf 0.25 | |||
$ python detect.py --source data/images --weights yolov5s.pt --conf 0.25 | |||
Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', img_size=640, iou_thres=0.45, output='inference/output', save_conf=False, save_txt=False, source='inference/images', update=False, view_img=False, weights='yolov5s.pt') | |||
Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', img_size=640, iou_thres=0.45, output='runs/detect', save_conf=False, save_txt=False, source='data/images', update=False, view_img=False, weights='yolov5s.pt') | |||
Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16160MB) | |||
Downloading https://github.com/ultralytics/yolov5/releases/download/v3.0/yolov5s.pt to yolov5s.pt... 100%|██████████████| 14.5M/14.5M [00:00<00:00, 21.3MB/s] | |||
Fusing layers... | |||
Model Summary: 140 layers, 7.45958e+06 parameters, 0 gradients | |||
image 1/2 yolov5/inference/images/bus.jpg: 640x480 4 persons, 1 buss, 1 skateboards, Done. (0.013s) | |||
image 2/2 yolov5/inference/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.013s) | |||
Results saved to yolov5/inference/output | |||
image 1/2 data/images/bus.jpg: 640x480 4 persons, 1 buss, 1 skateboards, Done. (0.013s) | |||
image 2/2 data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.013s) | |||
Results saved to runs/detect/exp0 | |||
Done. (0.124s) | |||
``` | |||
<img src="https://user-images.githubusercontent.com/26833433/97107365-685a8d80-16c7-11eb-8c2e-83aac701d8b9.jpeg" width="500"> |
@@ -1,6 +1,5 @@ | |||
import argparse | |||
import os | |||
import shutil | |||
import time | |||
from pathlib import Path | |||
@@ -11,23 +10,25 @@ from numpy import random | |||
from models.experimental import attempt_load | |||
from utils.datasets import LoadStreams, LoadImages | |||
from utils.general import ( | |||
check_img_size, non_max_suppression, apply_classifier, scale_coords, | |||
xyxy2xywh, plot_one_box, strip_optimizer, set_logging) | |||
from utils.general import check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, \ | |||
plot_one_box, strip_optimizer, set_logging, increment_dir | |||
from utils.torch_utils import select_device, load_classifier, time_synchronized | |||
def detect(save_img=False): | |||
out, source, weights, view_img, save_txt, imgsz = \ | |||
opt.save_dir, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size | |||
save_dir, source, weights, view_img, save_txt, imgsz = \ | |||
Path(opt.save_dir), opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size | |||
webcam = source.isnumeric() or source.startswith(('rtsp://', 'rtmp://', 'http://')) or source.endswith('.txt') | |||
# Directories | |||
if save_dir == Path('runs/detect'): # if default | |||
os.makedirs('runs/detect', exist_ok=True) # make base | |||
save_dir = Path(increment_dir(save_dir / 'exp', opt.name)) # increment run | |||
os.makedirs(save_dir / 'labels' if save_txt else save_dir, exist_ok=True) # make new dir | |||
# Initialize | |||
set_logging() | |||
device = select_device(opt.device) | |||
if os.path.exists(out): # output dir | |||
shutil.rmtree(out) # delete dir | |||
os.makedirs(out) # make new dir | |||
half = device.type != 'cpu' # half precision only supported on CUDA | |||
# Load model | |||
@@ -83,12 +84,12 @@ def detect(save_img=False): | |||
# Process detections | |||
for i, det in enumerate(pred): # detections per image | |||
if webcam: # batch_size >= 1 | |||
p, s, im0 = path[i], '%g: ' % i, im0s[i].copy() | |||
p, s, im0 = Path(path[i]), '%g: ' % i, im0s[i].copy() | |||
else: | |||
p, s, im0 = path, '', im0s | |||
p, s, im0 = Path(path), '', im0s | |||
save_path = str(Path(out) / Path(p).name) | |||
txt_path = str(Path(out) / Path(p).stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '') | |||
save_path = str(save_dir / p.name) | |||
txt_path = str(save_dir / 'labels' / p.stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '') | |||
s += '%gx%g ' % img.shape[2:] # print string | |||
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh | |||
if det is not None and len(det): | |||
@@ -104,7 +105,7 @@ def detect(save_img=False): | |||
for *xyxy, conf, cls in reversed(det): | |||
if save_txt: # Write to file | |||
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh | |||
line = (cls, conf, *xywh) if opt.save_conf else (cls, *xywh) # label format | |||
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format | |||
with open(txt_path + '.txt', 'a') as f: | |||
f.write(('%g ' * len(line) + '\n') % line) | |||
@@ -139,7 +140,7 @@ def detect(save_img=False): | |||
vid_writer.write(im0) | |||
if save_txt or save_img: | |||
print('Results saved to %s' % Path(out)) | |||
print('Results saved to %s' % save_dir) | |||
print('Done. (%.3fs)' % (time.time() - t0)) | |||
@@ -147,15 +148,16 @@ def detect(save_img=False): | |||
if __name__ == '__main__': | |||
parser = argparse.ArgumentParser() | |||
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)') | |||
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam | |||
parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcam | |||
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') | |||
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold') | |||
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS') | |||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |||
parser.add_argument('--view-img', action='store_true', help='display results') | |||
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') | |||
parser.add_argument('--save-txt', action='store_false', help='save results to *.txt') | |||
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') | |||
parser.add_argument('--save-dir', type=str, default='inference/output', help='directory to save results') | |||
parser.add_argument('--save-dir', type=str, default='runs/detect', help='directory to save results') | |||
parser.add_argument('--name', default='', help='name to append to --save-dir: i.e. runs/{N} -> runs/{N}_{name}') | |||
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3') | |||
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') | |||
parser.add_argument('--augment', action='store_true', help='augmented inference') |
@@ -113,6 +113,6 @@ if __name__ == '__main__': | |||
# Verify inference | |||
from PIL import Image | |||
img = Image.open('inference/images/zidane.jpg') | |||
img = Image.open('data/images/zidane.jpg') | |||
y = model(img) | |||
print(y[0].shape) |
@@ -1,307 +0,0 @@ | |||
import argparse | |||
import glob | |||
import os | |||
import shutil | |||
from pathlib import Path | |||
import numpy as np | |||
import torch | |||
import yaml | |||
from sotabencheval.object_detection import COCOEvaluator | |||
from sotabencheval.utils import is_server | |||
from tqdm import tqdm | |||
from models.experimental import attempt_load | |||
from utils.datasets import create_dataloader | |||
from utils.general import ( | |||
coco80_to_coco91_class, check_dataset, check_file, check_img_size, compute_loss, non_max_suppression, scale_coords, | |||
xyxy2xywh, clip_coords, set_logging) | |||
from utils.torch_utils import select_device, time_synchronized | |||
DATA_ROOT = './.data/vision/coco' if is_server() else '../coco' # sotabench data dir | |||
def test(data, | |||
weights=None, | |||
batch_size=16, | |||
imgsz=640, | |||
conf_thres=0.001, | |||
iou_thres=0.6, # for NMS | |||
save_json=False, | |||
single_cls=False, | |||
augment=False, | |||
verbose=False, | |||
model=None, | |||
dataloader=None, | |||
save_dir='', | |||
merge=False, | |||
save_txt=False): | |||
# Initialize/load model and set device | |||
training = model is not None | |||
if training: # called by train.py | |||
device = next(model.parameters()).device # get model device | |||
else: # called directly | |||
set_logging() | |||
device = select_device(opt.device, batch_size=batch_size) | |||
merge, save_txt = opt.merge, opt.save_txt # use Merge NMS, save *.txt labels | |||
if save_txt: | |||
out = Path('inference/output') | |||
if os.path.exists(out): | |||
shutil.rmtree(out) # delete output folder | |||
os.makedirs(out) # make new output folder | |||
# Remove previous | |||
for f in glob.glob(str(Path(save_dir) / 'test_batch*.jpg')): | |||
os.remove(f) | |||
# Load model | |||
model = attempt_load(weights, map_location=device) # load FP32 model | |||
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size | |||
# Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99 | |||
# if device.type != 'cpu' and torch.cuda.device_count() > 1: | |||
# model = nn.DataParallel(model) | |||
# Half | |||
half = device.type != 'cpu' # half precision only supported on CUDA | |||
if half: | |||
model.half() | |||
# Configure | |||
model.eval() | |||
with open(data) as f: | |||
data = yaml.load(f, Loader=yaml.FullLoader) # model dict | |||
check_dataset(data) # check | |||
nc = 1 if single_cls else int(data['nc']) # number of classes | |||
iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95 | |||
niou = iouv.numel() | |||
# Dataloader | |||
if not training: | |||
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img | |||
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once | |||
path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images | |||
dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt, | |||
hyp=None, augment=False, cache=True, pad=0.5, rect=True)[0] | |||
seen = 0 | |||
names = model.names if hasattr(model, 'names') else model.module.names | |||
coco91class = coco80_to_coco91_class() | |||
s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95') | |||
p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0. | |||
loss = torch.zeros(3, device=device) | |||
jdict, stats, ap, ap_class = [], [], [], [] | |||
evaluator = COCOEvaluator(root=DATA_ROOT, model_name=opt.weights.replace('.pt', '')) | |||
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): | |||
img = img.to(device, non_blocking=True) | |||
img = img.half() if half else img.float() # uint8 to fp16/32 | |||
img /= 255.0 # 0 - 255 to 0.0 - 1.0 | |||
targets = targets.to(device) | |||
nb, _, height, width = img.shape # batch size, channels, height, width | |||
whwh = torch.Tensor([width, height, width, height]).to(device) | |||
# Disable gradients | |||
with torch.no_grad(): | |||
# Run model | |||
t = time_synchronized() | |||
inf_out, train_out = model(img, augment=augment) # inference and training outputs | |||
t0 += time_synchronized() - t | |||
# Compute loss | |||
if training: # if model has loss hyperparameters | |||
loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls | |||
# Run NMS | |||
t = time_synchronized() | |||
output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, merge=merge) | |||
t1 += time_synchronized() - t | |||
# Statistics per image | |||
for si, pred in enumerate(output): | |||
labels = targets[targets[:, 0] == si, 1:] | |||
nl = len(labels) | |||
tcls = labels[:, 0].tolist() if nl else [] # target class | |||
seen += 1 | |||
if pred is None: | |||
if nl: | |||
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) | |||
continue | |||
# Append to text file | |||
if save_txt: | |||
gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh | |||
x = pred.clone() | |||
x[:, :4] = scale_coords(img[si].shape[1:], x[:, :4], shapes[si][0], shapes[si][1]) # to original | |||
for *xyxy, conf, cls in x: | |||
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh | |||
with open(str(out / Path(paths[si]).stem) + '.txt', 'a') as f: | |||
f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format | |||
# Clip boxes to image bounds | |||
clip_coords(pred, (height, width)) | |||
# Append to pycocotools JSON dictionary | |||
if save_json: | |||
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ... | |||
image_id = Path(paths[si]).stem | |||
box = pred[:, :4].clone() # xyxy | |||
scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape | |||
box = xyxy2xywh(box) # xywh | |||
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner | |||
for p, b in zip(pred.tolist(), box.tolist()): | |||
result = {'image_id': int(image_id) if image_id.isnumeric() else image_id, | |||
'category_id': coco91class[int(p[5])], | |||
'bbox': [round(x, 3) for x in b], | |||
'score': round(p[4], 5)} | |||
jdict.append(result) | |||
#evaluator.add([result]) | |||
#if evaluator.cache_exists: | |||
# break | |||
# # Assign all predictions as incorrect | |||
# correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device) | |||
# if nl: | |||
# detected = [] # target indices | |||
# tcls_tensor = labels[:, 0] | |||
# | |||
# # target boxes | |||
# tbox = xywh2xyxy(labels[:, 1:5]) * whwh | |||
# | |||
# # Per target class | |||
# for cls in torch.unique(tcls_tensor): | |||
# ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices | |||
# pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices | |||
# | |||
# # Search for detections | |||
# if pi.shape[0]: | |||
# # Prediction to target ious | |||
# ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1) # best ious, indices | |||
# | |||
# # Append detections | |||
# detected_set = set() | |||
# for j in (ious > iouv[0]).nonzero(as_tuple=False): | |||
# d = ti[i[j]] # detected target | |||
# if d.item() not in detected_set: | |||
# detected_set.add(d.item()) | |||
# detected.append(d) | |||
# correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn | |||
# if len(detected) == nl: # all targets already located in image | |||
# break | |||
# | |||
# # Append statistics (correct, conf, pcls, tcls) | |||
# stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) | |||
# # Plot images | |||
# if batch_i < 1: | |||
# f = Path(save_dir) / ('test_batch%g_gt.jpg' % batch_i) # filename | |||
# plot_images(img, targets, paths, str(f), names) # ground truth | |||
# f = Path(save_dir) / ('test_batch%g_pred.jpg' % batch_i) | |||
# plot_images(img, output_to_target(output, width, height), paths, str(f), names) # predictions | |||
evaluator.add(jdict) | |||
evaluator.save() | |||
# # Compute statistics | |||
# stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy | |||
# if len(stats) and stats[0].any(): | |||
# p, r, ap, f1, ap_class = ap_per_class(*stats) | |||
# p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, AP@0.5, AP@0.5:0.95] | |||
# mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() | |||
# nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class | |||
# else: | |||
# nt = torch.zeros(1) | |||
# | |||
# # Print results | |||
# pf = '%20s' + '%12.3g' * 6 # print format | |||
# print(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) | |||
# | |||
# # Print results per class | |||
# if verbose and nc > 1 and len(stats): | |||
# for i, c in enumerate(ap_class): | |||
# print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) | |||
# | |||
# # Print speeds | |||
# t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple | |||
# if not training: | |||
# print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t) | |||
# | |||
# # Save JSON | |||
# if save_json and len(jdict): | |||
# f = 'detections_val2017_%s_results.json' % \ | |||
# (weights.split(os.sep)[-1].replace('.pt', '') if isinstance(weights, str) else '') # filename | |||
# print('\nCOCO mAP with pycocotools... saving %s...' % f) | |||
# with open(f, 'w') as file: | |||
# json.dump(jdict, file) | |||
# | |||
# try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb | |||
# from pycocotools.coco import COCO | |||
# from pycocotools.cocoeval import COCOeval | |||
# | |||
# imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] | |||
# cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0]) # initialize COCO ground truth api | |||
# cocoDt = cocoGt.loadRes(f) # initialize COCO pred api | |||
# cocoEval = COCOeval(cocoGt, cocoDt, 'bbox') | |||
# cocoEval.params.imgIds = imgIds # image IDs to evaluate | |||
# cocoEval.evaluate() | |||
# cocoEval.accumulate() | |||
# cocoEval.summarize() | |||
# map, map50 = cocoEval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5) | |||
# except Exception as e: | |||
# print('ERROR: pycocotools unable to run: %s' % e) | |||
# | |||
# # Return results | |||
# model.float() # for training | |||
# maps = np.zeros(nc) + map | |||
# for i, c in enumerate(ap_class): | |||
# maps[c] = ap[i] | |||
# return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t | |||
if __name__ == '__main__': | |||
parser = argparse.ArgumentParser(prog='test.py') | |||
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)') | |||
parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path') | |||
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch') | |||
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') | |||
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold') | |||
parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS') | |||
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file') | |||
parser.add_argument('--task', default='val', help="'val', 'test', 'study'") | |||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |||
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset') | |||
parser.add_argument('--augment', action='store_true', help='augmented inference') | |||
parser.add_argument('--merge', action='store_true', help='use Merge NMS') | |||
parser.add_argument('--verbose', action='store_true', help='report mAP by class') | |||
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') | |||
opt = parser.parse_args() | |||
opt.save_json |= opt.data.endswith('coco.yaml') | |||
opt.data = check_file(opt.data) # check file | |||
print(opt) | |||
if opt.task in ['val', 'test']: # run normally | |||
test(opt.data, | |||
opt.weights, | |||
opt.batch_size, | |||
opt.img_size, | |||
opt.conf_thres, | |||
opt.iou_thres, | |||
opt.save_json, | |||
opt.single_cls, | |||
opt.augment, | |||
opt.verbose) | |||
elif opt.task == 'study': # run over a range of settings and save/plot | |||
for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']: | |||
f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to | |||
x = list(range(320, 800, 64)) # x axis | |||
y = [] # y axis | |||
for i in x: # img-size | |||
print('\nRunning %s point %s...' % (f, i)) | |||
r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json) | |||
y.append(r + t) # results and times | |||
np.savetxt(f, y, fmt='%10.4g') # save | |||
os.system('zip -r study.zip study_*.txt') | |||
# utils.general.plot_study_txt(f, x) # plot |
@@ -2,7 +2,6 @@ import argparse | |||
import glob | |||
import json | |||
import os | |||
import shutil | |||
from pathlib import Path | |||
import numpy as np | |||
@@ -12,9 +11,9 @@ from tqdm import tqdm | |||
from models.experimental import attempt_load | |||
from utils.datasets import create_dataloader | |||
from utils.general import ( | |||
coco80_to_coco91_class, check_dataset, check_file, check_img_size, compute_loss, non_max_suppression, scale_coords, | |||
xyxy2xywh, clip_coords, plot_images, xywh2xyxy, box_iou, output_to_target, ap_per_class, set_logging) | |||
from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, compute_loss, \ | |||
non_max_suppression, scale_coords, xyxy2xywh, clip_coords, plot_images, xywh2xyxy, box_iou, output_to_target, \ | |||
ap_per_class, set_logging, increment_dir | |||
from utils.torch_utils import select_device, time_synchronized | |||
@@ -46,16 +45,11 @@ def test(data, | |||
device = select_device(opt.device, batch_size=batch_size) | |||
save_txt = opt.save_txt # save *.txt labels | |||
# Remove previous | |||
if os.path.exists(save_dir): | |||
shutil.rmtree(save_dir) # delete dir | |||
os.makedirs(save_dir) # make new dir | |||
if save_txt: | |||
out = save_dir / 'autolabels' | |||
if os.path.exists(out): | |||
shutil.rmtree(out) # delete dir | |||
os.makedirs(out) # make new dir | |||
# Directories | |||
if save_dir == Path('runs/test'): # if default | |||
os.makedirs('runs/test', exist_ok=True) # make base | |||
save_dir = Path(increment_dir(save_dir / 'exp', opt.name)) # increment run | |||
os.makedirs(save_dir / 'labels' if save_txt else save_dir, exist_ok=True) # make new dir | |||
# Load model | |||
model = attempt_load(weights, map_location=device) # load FP32 model | |||
@@ -144,8 +138,8 @@ def test(data, | |||
x[:, :4] = scale_coords(img[si].shape[1:], x[:, :4], shapes[si][0], shapes[si][1]) # to original | |||
for *xyxy, conf, cls in x: | |||
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh | |||
line = (cls, conf, *xywh) if save_conf else (cls, *xywh) # label format | |||
with open(str(out / Path(paths[si]).stem) + '.txt', 'a') as f: | |||
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format | |||
with open(str(save_dir / 'labels' / Path(paths[si]).stem) + '.txt', 'a') as f: | |||
f.write(('%g ' * len(line) + '\n') % line) | |||
# W&B logging | |||
@@ -268,6 +262,7 @@ def test(data, | |||
print('ERROR: pycocotools unable to run: %s' % e) | |||
# Return results | |||
print('Results saved to %s' % save_dir) | |||
model.float() # for training | |||
maps = np.zeros(nc) + map | |||
for i, c in enumerate(ap_class): | |||
@@ -292,6 +287,7 @@ if __name__ == '__main__': | |||
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') | |||
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') | |||
parser.add_argument('--save-dir', type=str, default='runs/test', help='directory to save results') | |||
parser.add_argument('--name', default='', help='name to append to --save-dir: i.e. runs/{N} -> runs/{N}_{name}') | |||
opt = parser.parse_args() | |||
opt.save_json |= opt.data.endswith('coco.yaml') | |||
opt.data = check_file(opt.data) # check file | |||
@@ -313,8 +309,6 @@ if __name__ == '__main__': | |||
save_conf=opt.save_conf, | |||
) | |||
print('Results saved to %s' % opt.save_dir) | |||
elif opt.task == 'study': # run over a range of settings and save/plot | |||
for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']: | |||
f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to |
@@ -1,5 +1,6 @@ | |||
import argparse | |||
import logging | |||
import math | |||
import os | |||
import random | |||
import shutil | |||
@@ -7,7 +8,6 @@ import time | |||
from pathlib import Path | |||
from warnings import warn | |||
import math | |||
import numpy as np | |||
import torch.distributed as dist | |||
import torch.nn as nn | |||
@@ -404,14 +404,14 @@ if __name__ == '__main__': | |||
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') | |||
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training') | |||
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training') | |||
parser.add_argument('--name', default='', help='renames experiment folder exp{N} to exp{N}_{name} if supplied') | |||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |||
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') | |||
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset') | |||
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer') | |||
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode') | |||
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify') | |||
parser.add_argument('--logdir', type=str, default='runs/', help='logging directory') | |||
parser.add_argument('--logdir', type=str, default='runs/train', help='logging directory') | |||
parser.add_argument('--name', default='', help='name to append to --save-dir: i.e. runs/{N} -> runs/{N}_{name}') | |||
parser.add_argument('--log-imgs', type=int, default=10, help='number of images for W&B logging, max 100') | |||
parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers') | |||
@@ -428,7 +428,7 @@ if __name__ == '__main__': | |||
# Resume | |||
if opt.resume: # resume an interrupted run | |||
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path | |||
log_dir = Path(ckpt).parent.parent # runs/exp0 | |||
log_dir = Path(ckpt).parent.parent # runs/train/exp0 | |||
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist' | |||
with open(log_dir / 'opt.yaml') as f: | |||
opt = argparse.Namespace(**yaml.load(f, Loader=yaml.FullLoader)) # replace | |||
@@ -467,14 +467,13 @@ if __name__ == '__main__': | |||
if opt.global_rank in [-1, 0]: | |||
# Tensorboard | |||
logger.info(f'Start Tensorboard with "tensorboard --logdir {opt.logdir}", view at http://localhost:6006/') | |||
tb_writer = SummaryWriter(log_dir=log_dir) # runs/exp0 | |||
tb_writer = SummaryWriter(log_dir=log_dir) # runs/train/exp0 | |||
# W&B | |||
try: | |||
import wandb | |||
assert os.environ.get('WANDB_DISABLED') != 'true' | |||
logger.info("Weights & Biases logging enabled, to disable set os.environ['WANDB_DISABLED'] = 'true'") | |||
except (ImportError, AssertionError): | |||
opt.log_imgs = 0 | |||
logger.info("Install Weights & Biases for experiment logging via 'pip install wandb' (recommended)") |
@@ -596,22 +596,22 @@ | |||
} | |||
}, | |||
"source": [ | |||
"!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source inference/images/\n", | |||
"Image(filename='inference/output/zidane.jpg', width=600)" | |||
"!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images/\n", | |||
"Image(filename='runs/detect/exp0/zidane.jpg', width=600)" | |||
], | |||
"execution_count": null, | |||
"outputs": [ | |||
{ | |||
"output_type": "stream", | |||
"text": [ | |||
"Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', img_size=640, iou_thres=0.45, save_conf=False, save_dir='inference/output', save_txt=False, source='inference/images/', update=False, view_img=False, weights=['yolov5s.pt'])\n", | |||
"Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', img_size=640, iou_thres=0.45, save_conf=False, save_dir='runs/detect', save_txt=False, source='data/images/', update=False, view_img=False, weights=['yolov5s.pt'])\n", | |||
"Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16130MB)\n", | |||
"\n", | |||
"Fusing layers... \n", | |||
"Model Summary: 140 layers, 7.45958e+06 parameters, 0 gradients\n", | |||
"image 1/2 /content/yolov5/inference/images/bus.jpg: 640x480 4 persons, 1 buss, 1 skateboards, Done. (0.012s)\n", | |||
"image 2/2 /content/yolov5/inference/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.012s)\n", | |||
"Results saved to inference/output\n", | |||
"image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 buss, 1 skateboards, Done. (0.012s)\n", | |||
"image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.012s)\n", | |||
"Results saved to runs/detect/exp0\n", | |||
"Done. (0.113s)\n" | |||
], | |||
"name": "stdout" | |||
@@ -640,7 +640,7 @@ | |||
"id": "4qbaa3iEcrcE" | |||
}, | |||
"source": [ | |||
"Results are saved to `inference/output`. A full list of available inference sources:\n", | |||
"Results are saved to `runs/detect`. A full list of available inference sources:\n", | |||
"<img src=\"https://user-images.githubusercontent.com/26833433/98274798-2b7a7a80-1f94-11eb-91a4-70c73593e26b.jpg\" width=\"900\"> " | |||
] | |||
}, | |||
@@ -887,7 +887,7 @@ | |||
"source": [ | |||
"Train a YOLOv5s model on [COCO128](https://www.kaggle.com/ultralytics/coco128) with dataset `--data coco128.yaml`, starting from pretrained `--weights yolov5s.pt`, or from randomly initialized `--weights '' --cfg yolov5s.yaml`. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and **COCO, COCO128, and VOC datasets are downloaded automatically** on first use.\n", | |||
"\n", | |||
"All training results are saved to `runs/exp0` for the first experiment, then `runs/exp1`, `runs/exp2` etc. for subsequent experiments.\n" | |||
"All training results are saved to `runs/train/exp0` for the first experiment, then `runs/exp1`, `runs/exp2` etc. for subsequent experiments.\n" | |||
] | |||
}, | |||
{ | |||
@@ -969,7 +969,7 @@ | |||
"Analyzing anchors... anchors/target = 4.26, Best Possible Recall (BPR) = 0.9946\n", | |||
"Image sizes 640 train, 640 test\n", | |||
"Using 2 dataloader workers\n", | |||
"Logging results to runs/exp0\n", | |||
"Logging results to runs/train/exp0\n", | |||
"Starting training for 3 epochs...\n", | |||
"\n", | |||
" Epoch gpu_mem box obj cls total targets img_size\n", | |||
@@ -986,8 +986,8 @@ | |||
" 2/2 3.17G 0.04445 0.06545 0.01666 0.1266 149 640: 100% 8/8 [00:01<00:00, 4.33it/s]\n", | |||
" Class Images Targets P R mAP@.5 mAP@.5:.95: 100% 8/8 [00:02<00:00, 2.78it/s]\n", | |||
" all 128 929 0.395 0.766 0.701 0.455\n", | |||
"Optimizer stripped from runs/exp0/weights/last.pt, 15.2MB\n", | |||
"Optimizer stripped from runs/exp0/weights/best.pt, 15.2MB\n", | |||
"Optimizer stripped from runs/train/exp0/weights/last.pt, 15.2MB\n", | |||
"Optimizer stripped from runs/train/exp0/weights/best.pt, 15.2MB\n", | |||
"3 epochs completed in 0.005 hours.\n", | |||
"\n" | |||
], | |||
@@ -1030,7 +1030,7 @@ | |||
"source": [ | |||
"## Local Logging\n", | |||
"\n", | |||
"All results are logged by default to the `runs/exp0` directory, with a new directory created for each new training as `runs/exp1`, `runs/exp2`, etc. View train and test jpgs to see mosaics, labels/predictions and augmentation effects. Note a **Mosaic Dataloader** is used for training (shown below), a new concept developed by Ultralytics and first featured in [YOLOv4](https://arxiv.org/abs/2004.10934)." | |||
"All results are logged by default to the `runs/train/exp0` directory, with a new directory created for each new training as `runs/exp1`, `runs/exp2`, etc. View train and test jpgs to see mosaics, labels/predictions and augmentation effects. Note a **Mosaic Dataloader** is used for training (shown below), a new concept developed by Ultralytics and first featured in [YOLOv4](https://arxiv.org/abs/2004.10934)." | |||
] | |||
}, | |||
{ | |||
@@ -1039,9 +1039,9 @@ | |||
"id": "riPdhraOTCO0" | |||
}, | |||
"source": [ | |||
"Image(filename='runs/exp0/train_batch0.jpg', width=800) # train batch 0 mosaics and labels\n", | |||
"Image(filename='runs/exp0/test_batch0_gt.jpg', width=800) # test batch 0 ground truth\n", | |||
"Image(filename='runs/exp0/test_batch0_pred.jpg', width=800) # test batch 0 predictions" | |||
"Image(filename='runs/train/exp0/train_batch0.jpg', width=800) # train batch 0 mosaics and labels\n", | |||
"Image(filename='runs/train/exp0/test_batch0_gt.jpg', width=800) # test batch 0 ground truth\n", | |||
"Image(filename='runs/train/exp0/test_batch0_pred.jpg', width=800) # test batch 0 predictions" | |||
], | |||
"execution_count": null, | |||
"outputs": [] | |||
@@ -1078,7 +1078,7 @@ | |||
}, | |||
"source": [ | |||
"from utils.utils import plot_results \n", | |||
"plot_results(save_dir='runs/exp0') # plot results.txt as results.png\n", | |||
"plot_results(save_dir='runs/train/exp0') # plot results.txt as results.png\n", | |||
"Image(filename='results.png', width=800) " | |||
], | |||
"execution_count": null, | |||
@@ -1170,9 +1170,9 @@ | |||
" for di in 0 cpu # inference devices\n", | |||
" do\n", | |||
" python detect.py --weights $x.pt --device $di # detect official\n", | |||
" python detect.py --weights runs/exp0/weights/last.pt --device $di # detect custom\n", | |||
" python detect.py --weights runs/train/exp0/weights/last.pt --device $di # detect custom\n", | |||
" python test.py --weights $x.pt --device $di # test official\n", | |||
" python test.py --weights runs/exp0/weights/last.pt --device $di # test custom\n", | |||
" python test.py --weights runs/train/exp0/weights/last.pt --device $di # test custom\n", | |||
" done\n", | |||
" python models/yolo.py --cfg $x.yaml # inspect\n", | |||
" python models/export.py --weights $x.pt --img 640 --batch 1 # export\n", |
@@ -955,9 +955,15 @@ def increment_dir(dir, comment=''): | |||
# Increments a directory runs/exp1 --> runs/exp2_comment | |||
n = 0 # number | |||
dir = str(Path(dir)) # os-agnostic | |||
if os.path.isdir(dir): | |||
stem = '' | |||
dir += os.sep # removed by Path | |||
else: | |||
stem = Path(dir).stem | |||
dirs = sorted(glob.glob(dir + '*')) # directories | |||
if dirs: | |||
matches = [re.search(r"exp(\d+)", d) for d in dirs] | |||
matches = [re.search(r"%s(\d+)" % stem, d) for d in dirs] | |||
idxs = [int(m.groups()[0]) for m in matches if m] | |||
if idxs: | |||
n = max(idxs) + 1 # increment | |||
@@ -1262,7 +1268,7 @@ def plot_results_overlay(start=0, stop=0): # from utils.general import *; plot_ | |||
def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''): | |||
# from utils.general import *; plot_results(save_dir='runs/exp0') | |||
# from utils.general import *; plot_results(save_dir='runs/train/exp0') | |||
# Plot training 'results*.txt' as seen in https://github.com/ultralytics/yolov5#reproduce-our-training | |||
fig, ax = plt.subplots(2, 5, figsize=(12, 6)) | |||
ax = ax.ravel() |