* Add `@threaded` decorator * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>modifyDataloader
@@ -48,8 +48,8 @@ from utils.dataloaders import create_dataloader | |||
from utils.downloads import attempt_download | |||
from utils.general import (LOGGER, check_dataset, check_file, check_git_status, check_img_size, check_requirements, | |||
check_suffix, check_version, check_yaml, colorstr, get_latest_run, increment_path, | |||
init_seeds, intersect_dicts, is_ascii, labels_to_class_weights, labels_to_image_weights, | |||
methods, one_cycle, print_args, print_mutation, strip_optimizer) | |||
init_seeds, intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods, | |||
one_cycle, print_args, print_mutation, strip_optimizer) | |||
from utils.loggers import Loggers | |||
from utils.loggers.wandb.wandb_utils import check_wandb_resume | |||
from utils.loss import ComputeLoss |
@@ -14,6 +14,7 @@ import random | |||
import re | |||
import shutil | |||
import signal | |||
import threading | |||
import time | |||
import urllib | |||
from datetime import datetime | |||
@@ -167,6 +168,16 @@ def try_except(func): | |||
return handler | |||
def threaded(func): | |||
# Multi-threads a target function and returns thread. Usage: @threaded decorator | |||
def wrapper(*args, **kwargs): | |||
thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True) | |||
thread.start() | |||
return thread | |||
return wrapper | |||
def methods(instance): | |||
# Get class/instance methods | |||
return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith("__")] |
@@ -5,7 +5,6 @@ Logging utils | |||
import os | |||
import warnings | |||
from threading import Thread | |||
import pkg_resources as pkg | |||
import torch | |||
@@ -109,7 +108,7 @@ class Loggers(): | |||
self.tb.add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), []) | |||
if ni < 3: | |||
f = self.save_dir / f'train_batch{ni}.jpg' # filename | |||
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start() | |||
plot_images(imgs, targets, paths, f) | |||
if self.wandb and ni == 10: | |||
files = sorted(self.save_dir.glob('train*.jpg')) | |||
self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]}) | |||
@@ -132,7 +131,7 @@ class Loggers(): | |||
def on_fit_epoch_end(self, vals, epoch, best_fitness, fi): | |||
# Callback runs at the end of each fit (train+val) epoch | |||
x = {k: v for k, v in zip(self.keys, vals)} # dict | |||
x = dict(zip(self.keys, vals)) | |||
if self.csv: | |||
file = self.save_dir / 'results.csv' | |||
n = len(x) + 1 # number of cols | |||
@@ -171,7 +170,7 @@ class Loggers(): | |||
self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC') | |||
if self.wandb: | |||
self.wandb.log({k: v for k, v in zip(self.keys[3:10], results)}) # log best.pt val results | |||
self.wandb.log(dict(zip(self.keys[3:10], results))) | |||
self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]}) | |||
# Calling wandb.log. TODO: Refactor this into WandbLogger.log_model | |||
if not self.opt.evolve: |
@@ -19,7 +19,7 @@ import torch | |||
from PIL import Image, ImageDraw, ImageFont | |||
from utils.general import (CONFIG_DIR, FONT, LOGGER, Timeout, check_font, check_requirements, clip_coords, | |||
increment_path, is_ascii, try_except, xywh2xyxy, xyxy2xywh) | |||
increment_path, is_ascii, threaded, try_except, xywh2xyxy, xyxy2xywh) | |||
from utils.metrics import fitness | |||
# Settings | |||
@@ -32,9 +32,9 @@ class Colors: | |||
# Ultralytics color palette https://ultralytics.com/ | |||
def __init__(self): | |||
# hex = matplotlib.colors.TABLEAU_COLORS.values() | |||
hex = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB', | |||
'2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7') | |||
self.palette = [self.hex2rgb('#' + c) for c in hex] | |||
hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB', | |||
'2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7') | |||
self.palette = [self.hex2rgb(f'#{c}') for c in hexs] | |||
self.n = len(self.palette) | |||
def __call__(self, i, bgr=False): | |||
@@ -100,7 +100,7 @@ class Annotator: | |||
if label: | |||
tf = max(self.lw - 1, 1) # font thickness | |||
w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height | |||
outside = p1[1] - h - 3 >= 0 # label fits outside box | |||
outside = p1[1] - h >= 3 | |||
p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3 | |||
cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled | |||
cv2.putText(self.im, | |||
@@ -184,6 +184,7 @@ def output_to_target(output): | |||
return np.array(targets) | |||
@threaded | |||
def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=1920, max_subplots=16): | |||
# Plot image grid with labels | |||
if isinstance(images, torch.Tensor): | |||
@@ -420,7 +421,7 @@ def plot_results(file='path/to/results.csv', dir=''): | |||
ax = ax.ravel() | |||
files = list(save_dir.glob('results*.csv')) | |||
assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.' | |||
for fi, f in enumerate(files): | |||
for f in files: | |||
try: | |||
data = pd.read_csv(f) | |||
s = [x.strip() for x in data.columns] |
@@ -23,7 +23,6 @@ import json | |||
import os | |||
import sys | |||
from pathlib import Path | |||
from threading import Thread | |||
import numpy as np | |||
import torch | |||
@@ -255,10 +254,8 @@ def run( | |||
# Plot images | |||
if plots and batch_i < 3: | |||
f = save_dir / f'val_batch{batch_i}_labels.jpg' # labels | |||
Thread(target=plot_images, args=(im, targets, paths, f, names), daemon=True).start() | |||
f = save_dir / f'val_batch{batch_i}_pred.jpg' # predictions | |||
Thread(target=plot_images, args=(im, output_to_target(out), paths, f, names), daemon=True).start() | |||
plot_images(im, targets, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names) # labels | |||
plot_images(im, output_to_target(out), paths, save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred | |||
callbacks.run('on_val_batch_end') | |||