Browse Source

COCO evolution fix (#3388)

* COCO evolution fix

* cleanup

* update print

* print fix
modifyDataloader
Glenn Jocher GitHub 3 years ago
parent
commit
4b52e19a61
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 28 additions and 30 deletions
  1. +28
    -30
      train.py

+ 28
- 30
train.py View File

@@ -62,7 +62,6 @@ def train(hyp, opt, device, tb_writer=None):
init_seeds(2 + rank)
with open(opt.data) as f:
data_dict = yaml.safe_load(f) # data dict
is_coco = opt.data.endswith('coco.yaml')

# Logging- Doing this before checking the dataset. Might update data_dict
loggers = {'wandb': None} # loggers dict
@@ -78,6 +77,7 @@ def train(hyp, opt, device, tb_writer=None):
nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
is_coco = opt.data.endswith('coco.yaml') and nc == 80 # COCO dataset

# Model
pretrained = weights.endswith('.pt')
@@ -358,6 +358,7 @@ def train(hyp, opt, device, tb_writer=None):
single_cls=opt.single_cls,
dataloader=testloader,
save_dir=save_dir,
save_json=is_coco and final_epoch,
verbose=nc < 50 and final_epoch,
plots=plots and final_epoch,
wandb_logger=wandb_logger,
@@ -409,41 +410,38 @@ def train(hyp, opt, device, tb_writer=None):
# end epoch ----------------------------------------------------------------------------------------------------
# end training
if rank in [-1, 0]:
# Plots
logger.info(f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n')
if plots:
plot_results(save_dir=save_dir) # save as results.png
if wandb_logger.wandb:
files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files
if (save_dir / f).exists()]})
# Test best.pt
logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
if opt.data.endswith('coco.yaml') and nc == 80: # if COCO
for m in [last, best] if best.exists() else [last]: # speed, mAP tests
results, _, _ = test.test(opt.data,
batch_size=batch_size * 2,
imgsz=imgsz_test,
conf_thres=0.001,
iou_thres=0.7,
model=attempt_load(m, device).half(),
single_cls=opt.single_cls,
dataloader=testloader,
save_dir=save_dir,
save_json=True,
plots=False,
is_coco=is_coco)

# Strip optimizers
final = best if best.exists() else last # final model
for f in last, best:
if f.exists():
strip_optimizer(f) # strip optimizers
if opt.bucket:
os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload
if wandb_logger.wandb and not opt.evolve: # Log the stripped model
wandb_logger.wandb.log_artifact(str(final), type='model',
name='run_' + wandb_logger.wandb_run.id + '_model',
aliases=['latest', 'best', 'stripped'])

if not opt.evolve:
if is_coco: # COCO dataset
for m in [last, best] if best.exists() else [last]: # speed, mAP tests
results, _, _ = test.test(opt.data,
batch_size=batch_size * 2,
imgsz=imgsz_test,
conf_thres=0.001,
iou_thres=0.7,
model=attempt_load(m, device).half(),
single_cls=opt.single_cls,
dataloader=testloader,
save_dir=save_dir,
save_json=True,
plots=False,
is_coco=is_coco)

# Strip optimizers
for f in last, best:
if f.exists():
strip_optimizer(f) # strip optimizers
if wandb_logger.wandb: # Log the stripped model
wandb_logger.wandb.log_artifact(str(best if best.exists() else last), type='model',
name='run_' + wandb_logger.wandb_run.id + '_model',
aliases=['latest', 'best', 'stripped'])
wandb_logger.finish_run()
else:
dist.destroy_process_group()

Loading…
Cancel
Save