Quellcode durchsuchen

Update export.py with v3.0 Hardswish() support

5.0
Glenn Jocher vor 4 Jahren
Ursprung
Commit
4d7f222f73
2 geänderte Dateien mit 15 neuen und 10 gelöschten Zeilen
  1. +12
    -7
      models/export.py
  2. +3
    -3
      utils/activations.py

+ 12
- 7
models/export.py Datei anzeigen

@@ -8,12 +8,14 @@ import argparse

import torch

from models.common import Conv
from models.experimental import attempt_load
from utils.activations import Hardswish
from utils.general import set_logging
from utils.google_utils import attempt_download

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') # from yolov5/models/
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size')
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
opt = parser.parse_args()
@@ -25,12 +27,15 @@ if __name__ == '__main__':
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size(1,3,320,192) iDetection

# Load PyTorch model
attempt_download(opt.weights)
model = torch.load(opt.weights, map_location=torch.device('cpu'))['model'].float()
model.eval()
model.fuse()
model = attempt_load(opt.weights, map_location=torch.device('cpu')) # load FP32 model

# Update model
for k, m in model.named_modules():
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatability
if isinstance(m, Conv):
m.act = Hardswish() # assign activation
# if isinstance(m, Detect):
# m.forward = m.forward_export # assign forward (optional)
model.model[-1].export = True # set Detect() layer export=True
y = model(img) # dry run

@@ -56,7 +61,7 @@ if __name__ == '__main__':
# Checks
onnx_model = onnx.load(f) # load onnx model
onnx.checker.check_model(onnx_model) # check onnx model
print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
print('ONNX export success, saved as %s' % f)
except Exception as e:
print('ONNX export failure: %s' % e)

+ 3
- 3
utils/activations.py Datei anzeigen

@@ -10,11 +10,11 @@ class Swish(nn.Module): #
return x * torch.sigmoid(x)


class Hardswish(nn.Module): # alternative to nn.Hardswish() for export
class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
@staticmethod
def forward(x):
# return x * F.hardsigmoid(x)
return x * F.hardtanh(x + 3, 0., 6.) / 6.
# return x * F.hardsigmoid(x) # for torchscript and CoreML
return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX


class MemoryEfficientSwish(nn.Module):

Laden…
Abbrechen
Speichern