|
|
@@ -6,7 +6,6 @@ |
|
|
|
"name": "YOLOv5 Tutorial", |
|
|
|
"provenance": [], |
|
|
|
"collapsed_sections": [], |
|
|
|
"toc_visible": true, |
|
|
|
"include_colab_link": true |
|
|
|
}, |
|
|
|
"kernelspec": { |
|
|
@@ -16,7 +15,7 @@ |
|
|
|
"accelerator": "GPU", |
|
|
|
"widgets": { |
|
|
|
"application/vnd.jupyter.widget-state+json": { |
|
|
|
"2e915d9016c846e095e382b6a02ee773": { |
|
|
|
"484511f272e64eab8b42e68dac5f7a66": { |
|
|
|
"model_module": "@jupyter-widgets/controls", |
|
|
|
"model_name": "HBoxModel", |
|
|
|
"model_module_version": "1.5.0", |
|
|
@@ -29,15 +28,16 @@ |
|
|
|
"_view_count": null, |
|
|
|
"_view_module_version": "1.5.0", |
|
|
|
"box_style": "", |
|
|
|
"layout": "IPY_MODEL_cb7fc3a5c6cc4fde8d2c83e594a7c86e", |
|
|
|
"layout": "IPY_MODEL_78cceec059784f2bb36988d3336e4d56", |
|
|
|
"_model_module": "@jupyter-widgets/controls", |
|
|
|
"children": [ |
|
|
|
"IPY_MODEL_ac3edef4e3434f4587e6cbf8aa048770", |
|
|
|
"IPY_MODEL_853ac234cc2a4236946fc516871e10eb" |
|
|
|
"IPY_MODEL_ab93d8b65c134605934ff9ec5efb1bb6", |
|
|
|
"IPY_MODEL_30df865ded4c434191bce772c9a82f3a", |
|
|
|
"IPY_MODEL_20cdc61eb3404f42a12b37901b0d85fb" |
|
|
|
] |
|
|
|
} |
|
|
|
}, |
|
|
|
"cb7fc3a5c6cc4fde8d2c83e594a7c86e": { |
|
|
|
"78cceec059784f2bb36988d3336e4d56": { |
|
|
|
"model_module": "@jupyter-widgets/base", |
|
|
|
"model_name": "LayoutModel", |
|
|
|
"model_module_version": "1.2.0", |
|
|
@@ -89,15 +89,36 @@ |
|
|
|
"left": null |
|
|
|
} |
|
|
|
}, |
|
|
|
"ac3edef4e3434f4587e6cbf8aa048770": { |
|
|
|
"ab93d8b65c134605934ff9ec5efb1bb6": { |
|
|
|
"model_module": "@jupyter-widgets/controls", |
|
|
|
"model_name": "HTMLModel", |
|
|
|
"model_module_version": "1.5.0", |
|
|
|
"state": { |
|
|
|
"_view_name": "HTMLView", |
|
|
|
"style": "IPY_MODEL_2d7239993a9645b09b221405ac682743", |
|
|
|
"_dom_classes": [], |
|
|
|
"description": "", |
|
|
|
"_model_name": "HTMLModel", |
|
|
|
"placeholder": "", |
|
|
|
"_view_module": "@jupyter-widgets/controls", |
|
|
|
"_model_module_version": "1.5.0", |
|
|
|
"value": "100%", |
|
|
|
"_view_count": null, |
|
|
|
"_view_module_version": "1.5.0", |
|
|
|
"description_tooltip": null, |
|
|
|
"_model_module": "@jupyter-widgets/controls", |
|
|
|
"layout": "IPY_MODEL_17b5a87f92104ec7ab96bf507637d0d2" |
|
|
|
} |
|
|
|
}, |
|
|
|
"30df865ded4c434191bce772c9a82f3a": { |
|
|
|
"model_module": "@jupyter-widgets/controls", |
|
|
|
"model_name": "FloatProgressModel", |
|
|
|
"model_module_version": "1.5.0", |
|
|
|
"state": { |
|
|
|
"_view_name": "ProgressView", |
|
|
|
"style": "IPY_MODEL_13842ca90c0047e584b8d68d99dad2b1", |
|
|
|
"style": "IPY_MODEL_2358bfb2270247359e94b066b3cc3d1f", |
|
|
|
"_dom_classes": [], |
|
|
|
"description": "100%", |
|
|
|
"description": "", |
|
|
|
"_model_name": "FloatProgressModel", |
|
|
|
"bar_style": "success", |
|
|
|
"max": 818322941, |
|
|
@@ -110,99 +131,31 @@ |
|
|
|
"min": 0, |
|
|
|
"description_tooltip": null, |
|
|
|
"_model_module": "@jupyter-widgets/controls", |
|
|
|
"layout": "IPY_MODEL_f454999c3a924c7bad0746fb453dec36" |
|
|
|
"layout": "IPY_MODEL_3e984405db654b0b83b88b2db08baffd" |
|
|
|
} |
|
|
|
}, |
|
|
|
"853ac234cc2a4236946fc516871e10eb": { |
|
|
|
"20cdc61eb3404f42a12b37901b0d85fb": { |
|
|
|
"model_module": "@jupyter-widgets/controls", |
|
|
|
"model_name": "HTMLModel", |
|
|
|
"model_module_version": "1.5.0", |
|
|
|
"state": { |
|
|
|
"_view_name": "HTMLView", |
|
|
|
"style": "IPY_MODEL_f94a7ca8c1f04761bf38fdc5f99664b8", |
|
|
|
"style": "IPY_MODEL_654d8a19b9f949c6bbdaf8b0875c931e", |
|
|
|
"_dom_classes": [], |
|
|
|
"description": "", |
|
|
|
"_model_name": "HTMLModel", |
|
|
|
"placeholder": "", |
|
|
|
"_view_module": "@jupyter-widgets/controls", |
|
|
|
"_model_module_version": "1.5.0", |
|
|
|
"value": " 780M/780M [03:59<00:00, 3.42MB/s]", |
|
|
|
"value": " 780M/780M [00:33<00:00, 24.4MB/s]", |
|
|
|
"_view_count": null, |
|
|
|
"_view_module_version": "1.5.0", |
|
|
|
"description_tooltip": null, |
|
|
|
"_model_module": "@jupyter-widgets/controls", |
|
|
|
"layout": "IPY_MODEL_9da1a23b042c41618dd14b0e30aa7cbe" |
|
|
|
"layout": "IPY_MODEL_896030c5d13b415aaa05032818d81a6e" |
|
|
|
} |
|
|
|
}, |
|
|
|
"13842ca90c0047e584b8d68d99dad2b1": { |
|
|
|
"model_module": "@jupyter-widgets/controls", |
|
|
|
"model_name": "ProgressStyleModel", |
|
|
|
"model_module_version": "1.5.0", |
|
|
|
"state": { |
|
|
|
"_view_name": "StyleView", |
|
|
|
"_model_name": "ProgressStyleModel", |
|
|
|
"description_width": "initial", |
|
|
|
"_view_module": "@jupyter-widgets/base", |
|
|
|
"_model_module_version": "1.5.0", |
|
|
|
"_view_count": null, |
|
|
|
"_view_module_version": "1.2.0", |
|
|
|
"bar_color": null, |
|
|
|
"_model_module": "@jupyter-widgets/controls" |
|
|
|
} |
|
|
|
}, |
|
|
|
"f454999c3a924c7bad0746fb453dec36": { |
|
|
|
"model_module": "@jupyter-widgets/base", |
|
|
|
"model_name": "LayoutModel", |
|
|
|
"model_module_version": "1.2.0", |
|
|
|
"state": { |
|
|
|
"_view_name": "LayoutView", |
|
|
|
"grid_template_rows": null, |
|
|
|
"right": null, |
|
|
|
"justify_content": null, |
|
|
|
"_view_module": "@jupyter-widgets/base", |
|
|
|
"overflow": null, |
|
|
|
"_model_module_version": "1.2.0", |
|
|
|
"_view_count": null, |
|
|
|
"flex_flow": null, |
|
|
|
"width": null, |
|
|
|
"min_width": null, |
|
|
|
"border": null, |
|
|
|
"align_items": null, |
|
|
|
"bottom": null, |
|
|
|
"_model_module": "@jupyter-widgets/base", |
|
|
|
"top": null, |
|
|
|
"grid_column": null, |
|
|
|
"overflow_y": null, |
|
|
|
"overflow_x": null, |
|
|
|
"grid_auto_flow": null, |
|
|
|
"grid_area": null, |
|
|
|
"grid_template_columns": null, |
|
|
|
"flex": null, |
|
|
|
"_model_name": "LayoutModel", |
|
|
|
"justify_items": null, |
|
|
|
"grid_row": null, |
|
|
|
"max_height": null, |
|
|
|
"align_content": null, |
|
|
|
"visibility": null, |
|
|
|
"align_self": null, |
|
|
|
"height": null, |
|
|
|
"min_height": null, |
|
|
|
"padding": null, |
|
|
|
"grid_auto_rows": null, |
|
|
|
"grid_gap": null, |
|
|
|
"max_width": null, |
|
|
|
"order": null, |
|
|
|
"_view_module_version": "1.2.0", |
|
|
|
"grid_template_areas": null, |
|
|
|
"object_position": null, |
|
|
|
"object_fit": null, |
|
|
|
"grid_auto_columns": null, |
|
|
|
"margin": null, |
|
|
|
"display": null, |
|
|
|
"left": null |
|
|
|
} |
|
|
|
}, |
|
|
|
"f94a7ca8c1f04761bf38fdc5f99664b8": { |
|
|
|
"2d7239993a9645b09b221405ac682743": { |
|
|
|
"model_module": "@jupyter-widgets/controls", |
|
|
|
"model_name": "DescriptionStyleModel", |
|
|
|
"model_module_version": "1.5.0", |
|
|
@@ -217,7 +170,7 @@ |
|
|
|
"_model_module": "@jupyter-widgets/controls" |
|
|
|
} |
|
|
|
}, |
|
|
|
"9da1a23b042c41618dd14b0e30aa7cbe": { |
|
|
|
"17b5a87f92104ec7ab96bf507637d0d2": { |
|
|
|
"model_module": "@jupyter-widgets/base", |
|
|
|
"model_name": "LayoutModel", |
|
|
|
"model_module_version": "1.2.0", |
|
|
@@ -269,132 +222,14 @@ |
|
|
|
"left": null |
|
|
|
} |
|
|
|
}, |
|
|
|
"6ff8a710ded44391a624dec5c460b771": { |
|
|
|
"model_module": "@jupyter-widgets/controls", |
|
|
|
"model_name": "HBoxModel", |
|
|
|
"model_module_version": "1.5.0", |
|
|
|
"state": { |
|
|
|
"_view_name": "HBoxView", |
|
|
|
"_dom_classes": [], |
|
|
|
"_model_name": "HBoxModel", |
|
|
|
"_view_module": "@jupyter-widgets/controls", |
|
|
|
"_model_module_version": "1.5.0", |
|
|
|
"_view_count": null, |
|
|
|
"_view_module_version": "1.5.0", |
|
|
|
"box_style": "", |
|
|
|
"layout": "IPY_MODEL_3c19729b51cd45d4848035da06e96ff8", |
|
|
|
"_model_module": "@jupyter-widgets/controls", |
|
|
|
"children": [ |
|
|
|
"IPY_MODEL_23b2f0ae3d46438c8de375987c77f580", |
|
|
|
"IPY_MODEL_dd9498c321a9422da6faf17a0be026d4" |
|
|
|
] |
|
|
|
} |
|
|
|
}, |
|
|
|
"3c19729b51cd45d4848035da06e96ff8": { |
|
|
|
"model_module": "@jupyter-widgets/base", |
|
|
|
"model_name": "LayoutModel", |
|
|
|
"model_module_version": "1.2.0", |
|
|
|
"state": { |
|
|
|
"_view_name": "LayoutView", |
|
|
|
"grid_template_rows": null, |
|
|
|
"right": null, |
|
|
|
"justify_content": null, |
|
|
|
"_view_module": "@jupyter-widgets/base", |
|
|
|
"overflow": null, |
|
|
|
"_model_module_version": "1.2.0", |
|
|
|
"_view_count": null, |
|
|
|
"flex_flow": null, |
|
|
|
"width": null, |
|
|
|
"min_width": null, |
|
|
|
"border": null, |
|
|
|
"align_items": null, |
|
|
|
"bottom": null, |
|
|
|
"_model_module": "@jupyter-widgets/base", |
|
|
|
"top": null, |
|
|
|
"grid_column": null, |
|
|
|
"overflow_y": null, |
|
|
|
"overflow_x": null, |
|
|
|
"grid_auto_flow": null, |
|
|
|
"grid_area": null, |
|
|
|
"grid_template_columns": null, |
|
|
|
"flex": null, |
|
|
|
"_model_name": "LayoutModel", |
|
|
|
"justify_items": null, |
|
|
|
"grid_row": null, |
|
|
|
"max_height": null, |
|
|
|
"align_content": null, |
|
|
|
"visibility": null, |
|
|
|
"align_self": null, |
|
|
|
"height": null, |
|
|
|
"min_height": null, |
|
|
|
"padding": null, |
|
|
|
"grid_auto_rows": null, |
|
|
|
"grid_gap": null, |
|
|
|
"max_width": null, |
|
|
|
"order": null, |
|
|
|
"_view_module_version": "1.2.0", |
|
|
|
"grid_template_areas": null, |
|
|
|
"object_position": null, |
|
|
|
"object_fit": null, |
|
|
|
"grid_auto_columns": null, |
|
|
|
"margin": null, |
|
|
|
"display": null, |
|
|
|
"left": null |
|
|
|
} |
|
|
|
}, |
|
|
|
"23b2f0ae3d46438c8de375987c77f580": { |
|
|
|
"model_module": "@jupyter-widgets/controls", |
|
|
|
"model_name": "FloatProgressModel", |
|
|
|
"model_module_version": "1.5.0", |
|
|
|
"state": { |
|
|
|
"_view_name": "ProgressView", |
|
|
|
"style": "IPY_MODEL_d8dda4b2ce864fd682e558b9a48f602e", |
|
|
|
"_dom_classes": [], |
|
|
|
"description": "100%", |
|
|
|
"_model_name": "FloatProgressModel", |
|
|
|
"bar_style": "success", |
|
|
|
"max": 6984509, |
|
|
|
"_view_module": "@jupyter-widgets/controls", |
|
|
|
"_model_module_version": "1.5.0", |
|
|
|
"value": 6984509, |
|
|
|
"_view_count": null, |
|
|
|
"_view_module_version": "1.5.0", |
|
|
|
"orientation": "horizontal", |
|
|
|
"min": 0, |
|
|
|
"description_tooltip": null, |
|
|
|
"_model_module": "@jupyter-widgets/controls", |
|
|
|
"layout": "IPY_MODEL_ff8151449e444a14869684212b9ab14e" |
|
|
|
} |
|
|
|
}, |
|
|
|
"dd9498c321a9422da6faf17a0be026d4": { |
|
|
|
"model_module": "@jupyter-widgets/controls", |
|
|
|
"model_name": "HTMLModel", |
|
|
|
"model_module_version": "1.5.0", |
|
|
|
"state": { |
|
|
|
"_view_name": "HTMLView", |
|
|
|
"style": "IPY_MODEL_0f84fe609bcf4aa9afdc32a8cf076909", |
|
|
|
"_dom_classes": [], |
|
|
|
"description": "", |
|
|
|
"_model_name": "HTMLModel", |
|
|
|
"placeholder": "", |
|
|
|
"_view_module": "@jupyter-widgets/controls", |
|
|
|
"_model_module_version": "1.5.0", |
|
|
|
"value": " 6.66M/6.66M [00:01<00:00, 6.08MB/s]", |
|
|
|
"_view_count": null, |
|
|
|
"_view_module_version": "1.5.0", |
|
|
|
"description_tooltip": null, |
|
|
|
"_model_module": "@jupyter-widgets/controls", |
|
|
|
"layout": "IPY_MODEL_8fda673769984e2b928ef820d34c85c3" |
|
|
|
} |
|
|
|
}, |
|
|
|
"d8dda4b2ce864fd682e558b9a48f602e": { |
|
|
|
"2358bfb2270247359e94b066b3cc3d1f": { |
|
|
|
"model_module": "@jupyter-widgets/controls", |
|
|
|
"model_name": "ProgressStyleModel", |
|
|
|
"model_module_version": "1.5.0", |
|
|
|
"state": { |
|
|
|
"_view_name": "StyleView", |
|
|
|
"_model_name": "ProgressStyleModel", |
|
|
|
"description_width": "initial", |
|
|
|
"description_width": "", |
|
|
|
"_view_module": "@jupyter-widgets/base", |
|
|
|
"_model_module_version": "1.5.0", |
|
|
|
"_view_count": null, |
|
|
@@ -403,7 +238,7 @@ |
|
|
|
"_model_module": "@jupyter-widgets/controls" |
|
|
|
} |
|
|
|
}, |
|
|
|
"ff8151449e444a14869684212b9ab14e": { |
|
|
|
"3e984405db654b0b83b88b2db08baffd": { |
|
|
|
"model_module": "@jupyter-widgets/base", |
|
|
|
"model_name": "LayoutModel", |
|
|
|
"model_module_version": "1.2.0", |
|
|
@@ -455,7 +290,7 @@ |
|
|
|
"left": null |
|
|
|
} |
|
|
|
}, |
|
|
|
"0f84fe609bcf4aa9afdc32a8cf076909": { |
|
|
|
"654d8a19b9f949c6bbdaf8b0875c931e": { |
|
|
|
"model_module": "@jupyter-widgets/controls", |
|
|
|
"model_name": "DescriptionStyleModel", |
|
|
|
"model_module_version": "1.5.0", |
|
|
@@ -470,7 +305,7 @@ |
|
|
|
"_model_module": "@jupyter-widgets/controls" |
|
|
|
} |
|
|
|
}, |
|
|
|
"8fda673769984e2b928ef820d34c85c3": { |
|
|
|
"896030c5d13b415aaa05032818d81a6e": { |
|
|
|
"model_module": "@jupyter-widgets/base", |
|
|
|
"model_name": "LayoutModel", |
|
|
|
"model_module_version": "1.2.0", |
|
|
@@ -567,7 +402,7 @@ |
|
|
|
"colab": { |
|
|
|
"base_uri": "https://localhost:8080/" |
|
|
|
}, |
|
|
|
"outputId": "ada1dd8d-e0aa-4858-e893-dc320319ca30" |
|
|
|
"outputId": "4d67116a-43e9-4d84-d19e-1edd83f23a04" |
|
|
|
}, |
|
|
|
"source": [ |
|
|
|
"!git clone https://github.com/ultralytics/yolov5 # clone repo\n", |
|
|
@@ -580,7 +415,7 @@ |
|
|
|
"clear_output()\n", |
|
|
|
"print(f\"Setup complete. Using torch {torch.__version__} ({torch.cuda.get_device_properties(0).name if torch.cuda.is_available() else 'CPU'})\")" |
|
|
|
], |
|
|
|
"execution_count": null, |
|
|
|
"execution_count": 1, |
|
|
|
"outputs": [ |
|
|
|
{ |
|
|
|
"output_type": "stream", |
|
|
@@ -619,25 +454,26 @@ |
|
|
|
"colab": { |
|
|
|
"base_uri": "https://localhost:8080/" |
|
|
|
}, |
|
|
|
"outputId": "a7a37616-a82b-4bdb-a463-6ead850b5615" |
|
|
|
"outputId": "8b728908-81ab-4861-edb0-4d0c46c439fb" |
|
|
|
}, |
|
|
|
"source": [ |
|
|
|
"%rm -rf runs\n", |
|
|
|
"!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images/\n", |
|
|
|
"Image(filename='runs/detect/exp/zidane.jpg', width=600)" |
|
|
|
"#Image(filename='runs/detect/exp/zidane.jpg', width=600)" |
|
|
|
], |
|
|
|
"execution_count": null, |
|
|
|
"execution_count": 4, |
|
|
|
"outputs": [ |
|
|
|
{ |
|
|
|
"output_type": "stream", |
|
|
|
"text": [ |
|
|
|
"\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images/, imgsz=640, conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False\n", |
|
|
|
"YOLOv5 🚀 v5.0-330-g18f6ba7 torch 1.9.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n", |
|
|
|
"YOLOv5 🚀 v5.0-367-g01cdb76 torch 1.9.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n", |
|
|
|
"\n", |
|
|
|
"Fusing layers... \n", |
|
|
|
"Model Summary: 224 layers, 7266973 parameters, 0 gradients\n", |
|
|
|
"image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 1 fire hydrant, Done. (0.008s)\n", |
|
|
|
"image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.008s)\n", |
|
|
|
"Results saved to runs/detect/exp\n", |
|
|
|
"image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 1 fire hydrant, Done. (0.007s)\n", |
|
|
|
"image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.007s)\n", |
|
|
|
"Results saved to \u001b[1mruns/detect/exp\u001b[0m\n", |
|
|
|
"Done. (0.091s)\n" |
|
|
|
], |
|
|
|
"name": "stdout" |
|
|
@@ -680,49 +516,45 @@ |
|
|
|
"id": "WQPtK1QYVaD_", |
|
|
|
"colab": { |
|
|
|
"base_uri": "https://localhost:8080/", |
|
|
|
"height": 66, |
|
|
|
"height": 48, |
|
|
|
"referenced_widgets": [ |
|
|
|
"2e915d9016c846e095e382b6a02ee773", |
|
|
|
"cb7fc3a5c6cc4fde8d2c83e594a7c86e", |
|
|
|
"ac3edef4e3434f4587e6cbf8aa048770", |
|
|
|
"853ac234cc2a4236946fc516871e10eb", |
|
|
|
"13842ca90c0047e584b8d68d99dad2b1", |
|
|
|
"f454999c3a924c7bad0746fb453dec36", |
|
|
|
"f94a7ca8c1f04761bf38fdc5f99664b8", |
|
|
|
"9da1a23b042c41618dd14b0e30aa7cbe" |
|
|
|
"484511f272e64eab8b42e68dac5f7a66", |
|
|
|
"78cceec059784f2bb36988d3336e4d56", |
|
|
|
"ab93d8b65c134605934ff9ec5efb1bb6", |
|
|
|
"30df865ded4c434191bce772c9a82f3a", |
|
|
|
"20cdc61eb3404f42a12b37901b0d85fb", |
|
|
|
"2d7239993a9645b09b221405ac682743", |
|
|
|
"17b5a87f92104ec7ab96bf507637d0d2", |
|
|
|
"2358bfb2270247359e94b066b3cc3d1f", |
|
|
|
"3e984405db654b0b83b88b2db08baffd", |
|
|
|
"654d8a19b9f949c6bbdaf8b0875c931e", |
|
|
|
"896030c5d13b415aaa05032818d81a6e" |
|
|
|
] |
|
|
|
}, |
|
|
|
"outputId": "3606f305-aa67-43fd-d5d6-93d1f311768c" |
|
|
|
"outputId": "7e6f5c96-c819-43e1-cd03-d3b9878cf8de" |
|
|
|
}, |
|
|
|
"source": [ |
|
|
|
"# Download COCO val2017\n", |
|
|
|
"torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017val.zip', 'tmp.zip')\n", |
|
|
|
"!unzip -q tmp.zip -d ../datasets && rm tmp.zip" |
|
|
|
], |
|
|
|
"execution_count": null, |
|
|
|
"execution_count": 5, |
|
|
|
"outputs": [ |
|
|
|
{ |
|
|
|
"output_type": "display_data", |
|
|
|
"data": { |
|
|
|
"application/vnd.jupyter.widget-view+json": { |
|
|
|
"model_id": "2e915d9016c846e095e382b6a02ee773", |
|
|
|
"model_id": "484511f272e64eab8b42e68dac5f7a66", |
|
|
|
"version_minor": 0, |
|
|
|
"version_major": 2 |
|
|
|
}, |
|
|
|
"text/plain": [ |
|
|
|
"HBox(children=(FloatProgress(value=0.0, max=818322941.0), HTML(value='')))" |
|
|
|
" 0%| | 0.00/780M [00:00<?, ?B/s]" |
|
|
|
] |
|
|
|
}, |
|
|
|
"metadata": { |
|
|
|
"tags": [] |
|
|
|
} |
|
|
|
}, |
|
|
|
{ |
|
|
|
"output_type": "stream", |
|
|
|
"text": [ |
|
|
|
"\n" |
|
|
|
], |
|
|
|
"name": "stdout" |
|
|
|
} |
|
|
|
] |
|
|
|
}, |
|
|
@@ -733,45 +565,45 @@ |
|
|
|
"colab": { |
|
|
|
"base_uri": "https://localhost:8080/" |
|
|
|
}, |
|
|
|
"outputId": "20fbc423-f536-43ff-e70b-3acf6aeade99" |
|
|
|
"outputId": "3dd0e2fc-aecf-4108-91b1-6392da1863cb" |
|
|
|
}, |
|
|
|
"source": [ |
|
|
|
"# Run YOLOv5x on COCO val2017\n", |
|
|
|
"!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half" |
|
|
|
], |
|
|
|
"execution_count": null, |
|
|
|
"execution_count": 6, |
|
|
|
"outputs": [ |
|
|
|
{ |
|
|
|
"output_type": "stream", |
|
|
|
"text": [ |
|
|
|
"\u001b[34m\u001b[1mval: \u001b[0mdata=./data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True\n", |
|
|
|
"YOLOv5 🚀 v5.0-330-g18f6ba7 torch 1.9.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n", |
|
|
|
"YOLOv5 🚀 v5.0-367-g01cdb76 torch 1.9.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n", |
|
|
|
"\n", |
|
|
|
"Downloading https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5x.pt to yolov5x.pt...\n", |
|
|
|
"100% 168M/168M [00:05<00:00, 31.9MB/s]\n", |
|
|
|
"100% 168M/168M [00:08<00:00, 20.6MB/s]\n", |
|
|
|
"\n", |
|
|
|
"Fusing layers... \n", |
|
|
|
"Model Summary: 476 layers, 87730285 parameters, 0 gradients\n", |
|
|
|
"\u001b[34m\u001b[1mval: \u001b[0mScanning '../datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 2653.03it/s]\n", |
|
|
|
"\u001b[34m\u001b[1mval: \u001b[0mScanning '../datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 2749.96it/s]\n", |
|
|
|
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: ../datasets/coco/val2017.cache\n", |
|
|
|
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [01:18<00:00, 2.00it/s]\n", |
|
|
|
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [01:08<00:00, 2.28it/s]\n", |
|
|
|
" all 5000 36335 0.746 0.626 0.68 0.49\n", |
|
|
|
"Speed: 0.1ms pre-process, 5.1ms inference, 1.5ms NMS per image at shape (32, 3, 640, 640)\n", |
|
|
|
"Speed: 0.1ms pre-process, 5.1ms inference, 1.6ms NMS per image at shape (32, 3, 640, 640)\n", |
|
|
|
"\n", |
|
|
|
"Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json...\n", |
|
|
|
"loading annotations into memory...\n", |
|
|
|
"Done (t=0.44s)\n", |
|
|
|
"Done (t=0.46s)\n", |
|
|
|
"creating index...\n", |
|
|
|
"index created!\n", |
|
|
|
"Loading and preparing results...\n", |
|
|
|
"DONE (t=4.82s)\n", |
|
|
|
"DONE (t=4.94s)\n", |
|
|
|
"creating index...\n", |
|
|
|
"index created!\n", |
|
|
|
"Running per image evaluation...\n", |
|
|
|
"Evaluate annotation type *bbox*\n", |
|
|
|
"DONE (t=84.52s).\n", |
|
|
|
"DONE (t=83.60s).\n", |
|
|
|
"Accumulating evaluation results...\n", |
|
|
|
"DONE (t=13.82s).\n", |
|
|
|
"DONE (t=13.22s).\n", |
|
|
|
" Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.504\n", |
|
|
|
" Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.688\n", |
|
|
|
" Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.546\n", |
|
|
@@ -784,7 +616,7 @@ |
|
|
|
" Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.524\n", |
|
|
|
" Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.735\n", |
|
|
|
" Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.827\n", |
|
|
|
"Results saved to runs/val/exp\n" |
|
|
|
"Results saved to \u001b[1mruns/val/exp\u001b[0m\n" |
|
|
|
], |
|
|
|
"name": "stdout" |
|
|
|
} |
|
|
@@ -841,54 +673,15 @@ |
|
|
|
{ |
|
|
|
"cell_type": "code", |
|
|
|
"metadata": { |
|
|
|
"id": "Knxi2ncxWffW", |
|
|
|
"colab": { |
|
|
|
"base_uri": "https://localhost:8080/", |
|
|
|
"height": 66, |
|
|
|
"referenced_widgets": [ |
|
|
|
"6ff8a710ded44391a624dec5c460b771", |
|
|
|
"3c19729b51cd45d4848035da06e96ff8", |
|
|
|
"23b2f0ae3d46438c8de375987c77f580", |
|
|
|
"dd9498c321a9422da6faf17a0be026d4", |
|
|
|
"d8dda4b2ce864fd682e558b9a48f602e", |
|
|
|
"ff8151449e444a14869684212b9ab14e", |
|
|
|
"0f84fe609bcf4aa9afdc32a8cf076909", |
|
|
|
"8fda673769984e2b928ef820d34c85c3" |
|
|
|
] |
|
|
|
}, |
|
|
|
"outputId": "4510c6b0-8d2a-436c-d3f4-c8f8470d913a" |
|
|
|
"id": "Knxi2ncxWffW" |
|
|
|
}, |
|
|
|
"source": [ |
|
|
|
"# Download COCO128\n", |
|
|
|
"torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip', 'tmp.zip')\n", |
|
|
|
"!unzip -q tmp.zip -d ../ && rm tmp.zip" |
|
|
|
"!unzip -q tmp.zip -d ../datasets && rm tmp.zip" |
|
|
|
], |
|
|
|
"execution_count": null, |
|
|
|
"outputs": [ |
|
|
|
{ |
|
|
|
"output_type": "display_data", |
|
|
|
"data": { |
|
|
|
"application/vnd.jupyter.widget-view+json": { |
|
|
|
"model_id": "6ff8a710ded44391a624dec5c460b771", |
|
|
|
"version_minor": 0, |
|
|
|
"version_major": 2 |
|
|
|
}, |
|
|
|
"text/plain": [ |
|
|
|
"HBox(children=(FloatProgress(value=0.0, max=6984509.0), HTML(value='')))" |
|
|
|
] |
|
|
|
}, |
|
|
|
"metadata": { |
|
|
|
"tags": [] |
|
|
|
} |
|
|
|
}, |
|
|
|
{ |
|
|
|
"output_type": "stream", |
|
|
|
"text": [ |
|
|
|
"\n" |
|
|
|
], |
|
|
|
"name": "stdout" |
|
|
|
} |
|
|
|
] |
|
|
|
"outputs": [] |
|
|
|
}, |
|
|
|
{ |
|
|
|
"cell_type": "markdown", |
|
|
@@ -935,40 +728,34 @@ |
|
|
|
"colab": { |
|
|
|
"base_uri": "https://localhost:8080/" |
|
|
|
}, |
|
|
|
"outputId": "cd8ac17d-19a8-4e87-ab6a-31af1edac1ef" |
|
|
|
"outputId": "00ea4b14-a75c-44a2-a913-03b431b69de5" |
|
|
|
}, |
|
|
|
"source": [ |
|
|
|
"# Train YOLOv5s on COCO128 for 3 epochs\n", |
|
|
|
"!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache" |
|
|
|
], |
|
|
|
"execution_count": null, |
|
|
|
"execution_count": 8, |
|
|
|
"outputs": [ |
|
|
|
{ |
|
|
|
"output_type": "stream", |
|
|
|
"text": [ |
|
|
|
"\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, evolve=None, bucket=, cache_images=True, image_weights=False, device=, multi_scale=False, single_cls=False, adam=False, sync_bn=False, workers=8, project=runs/train, entity=None, name=exp, exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, upload_dataset=False, bbox_interval=-1, save_period=-1, artifact_alias=latest, local_rank=-1\n", |
|
|
|
"\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, adam=False, sync_bn=False, workers=8, project=runs/train, entity=None, name=exp, exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, upload_dataset=False, bbox_interval=-1, save_period=-1, artifact_alias=latest, local_rank=-1, freeze=0\n", |
|
|
|
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n", |
|
|
|
"YOLOv5 🚀 v5.0-330-g18f6ba7 torch 1.9.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n", |
|
|
|
"YOLOv5 🚀 v5.0-367-g01cdb76 torch 1.9.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n", |
|
|
|
"\n", |
|
|
|
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n", |
|
|
|
"\u001b[34m\u001b[1mWeights & Biases: \u001b[0mrun 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs (RECOMMENDED)\n", |
|
|
|
"\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n", |
|
|
|
"2021-07-29 22:56:52.096481: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0\n", |
|
|
|
"\n", |
|
|
|
"WARNING: Dataset not found, nonexistent paths: ['/content/datasets/coco128/images/train2017']\n", |
|
|
|
"Downloading https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip ...\n", |
|
|
|
"100% 6.66M/6.66M [00:00<00:00, 44.0MB/s]\n", |
|
|
|
"Dataset autodownload success\n", |
|
|
|
"\n", |
|
|
|
"2021-08-15 14:40:43.449642: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0\n", |
|
|
|
"\n", |
|
|
|
" from n params module arguments \n", |
|
|
|
" 0 -1 1 3520 models.common.Focus [3, 32, 3] \n", |
|
|
|
" 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n", |
|
|
|
" 2 -1 1 18816 models.common.C3 [64, 64, 1] \n", |
|
|
|
" 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] \n", |
|
|
|
" 4 -1 1 156928 models.common.C3 [128, 128, 3] \n", |
|
|
|
" 4 -1 3 156928 models.common.C3 [128, 128, 3] \n", |
|
|
|
" 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] \n", |
|
|
|
" 6 -1 1 625152 models.common.C3 [256, 256, 3] \n", |
|
|
|
" 6 -1 3 625152 models.common.C3 [256, 256, 3] \n", |
|
|
|
" 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] \n", |
|
|
|
" 8 -1 1 656896 models.common.SPP [512, 512, [5, 9, 13]] \n", |
|
|
|
" 9 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n", |
|
|
@@ -993,11 +780,11 @@ |
|
|
|
"Scaled weight_decay = 0.0005\n", |
|
|
|
"\u001b[34m\u001b[1moptimizer:\u001b[0m SGD with parameter groups 59 weight, 62 weight (no decay), 62 bias\n", |
|
|
|
"\u001b[34m\u001b[1malbumentations: \u001b[0mversion 1.0.3 required by YOLOv5, but version 0.1.12 is currently installed\n", |
|
|
|
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning '../datasets/coco128/labels/train2017' images and labels...128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 2021.98it/s]\n", |
|
|
|
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning '../datasets/coco128/labels/train2017' images and labels...128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 2440.28it/s]\n", |
|
|
|
"\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: ../datasets/coco128/labels/train2017.cache\n", |
|
|
|
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:00<00:00, 273.58it/s]\n", |
|
|
|
"\u001b[34m\u001b[1mval: \u001b[0mScanning '../datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 506004.63it/s]\n", |
|
|
|
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:01<00:00, 121.71it/s]\n", |
|
|
|
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 302.61it/s]\n", |
|
|
|
"\u001b[34m\u001b[1mval: \u001b[0mScanning '../datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<?, ?it/s]\n", |
|
|
|
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 142.55it/s]\n", |
|
|
|
"[W pthreadpool-cpp.cc:90] Warning: Leaking Caffe2 thread-pool after fork. (function pthreadpool)\n", |
|
|
|
"[W pthreadpool-cpp.cc:90] Warning: Leaking Caffe2 thread-pool after fork. (function pthreadpool)\n", |
|
|
|
"Plotting labels... \n", |
|
|
@@ -1009,23 +796,24 @@ |
|
|
|
"Starting training for 3 epochs...\n", |
|
|
|
"\n", |
|
|
|
" Epoch gpu_mem box obj cls labels img_size\n", |
|
|
|
" 0/2 3.64G 0.0441 0.06646 0.02229 290 640: 100% 8/8 [00:04<00:00, 1.93it/s]\n", |
|
|
|
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:01<00:00, 3.45it/s]\n", |
|
|
|
" all 128 929 0.696 0.562 0.644 0.419\n", |
|
|
|
" 0/2 3.64G 0.04492 0.0674 0.02213 298 640: 100% 8/8 [00:03<00:00, 2.05it/s]\n", |
|
|
|
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.70it/s]\n", |
|
|
|
" all 128 929 0.686 0.565 0.642 0.421\n", |
|
|
|
"\n", |
|
|
|
" Epoch gpu_mem box obj cls labels img_size\n", |
|
|
|
" 1/2 5.04G 0.04573 0.06289 0.021 226 640: 100% 8/8 [00:01<00:00, 5.46it/s]\n", |
|
|
|
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:01<00:00, 3.16it/s]\n", |
|
|
|
" all 128 929 0.71 0.567 0.654 0.424\n", |
|
|
|
" 1/2 5.04G 0.04403 0.0611 0.01986 232 640: 100% 8/8 [00:01<00:00, 5.59it/s]\n", |
|
|
|
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.46it/s]\n", |
|
|
|
" all 128 929 0.694 0.563 0.654 0.425\n", |
|
|
|
"\n", |
|
|
|
" Epoch gpu_mem box obj cls labels img_size\n", |
|
|
|
" 2/2 5.04G 0.04542 0.0715 0.02028 242 640: 100% 8/8 [00:01<00:00, 5.12it/s]\n", |
|
|
|
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:02<00:00, 1.46it/s]\n", |
|
|
|
" all 128 929 0.731 0.563 0.658 0.427\n", |
|
|
|
"3 epochs completed in 0.006 hours.\n", |
|
|
|
" 2/2 5.04G 0.04616 0.07056 0.02071 214 640: 100% 8/8 [00:01<00:00, 5.94it/s]\n", |
|
|
|
" Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:02<00:00, 1.52it/s]\n", |
|
|
|
" all 128 929 0.711 0.562 0.66 0.431\n", |
|
|
|
"\n", |
|
|
|
"3 epochs completed in 0.005 hours.\n", |
|
|
|
"Optimizer stripped from runs/train/exp/weights/last.pt, 14.8MB\n", |
|
|
|
"Optimizer stripped from runs/train/exp/weights/best.pt, 14.8MB\n" |
|
|
|
"Optimizer stripped from runs/train/exp/weights/best.pt, 14.8MB\n", |
|
|
|
"Results saved to \u001b[1mruns/train/exp\u001b[0m\n" |
|
|
|
], |
|
|
|
"name": "stdout" |
|
|
|
} |