Glenn Jocher 4 vuotta sitten
vanhempi
commit
4f44aaf26b
1 muutettua tiedostoa jossa 22 lisäystä ja 7 poistoa
  1. +22
    -7
      utils/utils.py

+ 22
- 7
utils/utils.py Näytä tiedosto

@@ -471,6 +471,7 @@ def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, multi_label=T
# Settings
merge = True # merge for best mAP
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
max_det = 300 # maximum number of detections per image
time_limit = 10.0 # seconds to quit after

t = time.time()
@@ -520,6 +521,8 @@ def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, multi_label=T
c = x[:, 5] * 0 if agnostic else x[:, 5] # classes
boxes, scores = x[:, :4].clone() + c.view(-1, 1) * max_wh, x[:, 4] # boxes (offset by class), scores
i = torchvision.ops.boxes.nms(boxes, scores, iou_thres)
if i.shape[0] > max_det: # limit detections
i = i[:max_det]
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
try: # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
@@ -975,15 +978,27 @@ def plot_targets_txt(): # from utils.utils import *; plot_targets_txt()

def plot_study_txt(f='study.txt', x=None): # from utils.utils import *; plot_study_txt()
# Plot study.txt generated by test.py
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
x = np.arange(y.shape[1]) if x is None else np.array(x)
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
ax = ax.ravel()
for i in range(7):
ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
ax[i].set_title(s[i])
plt.savefig(f.replace('.txt','.png'), dpi=200)

for f in glob.glob('study*.txt'):
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
x = np.arange(y.shape[1]) if x is None else np.array(x)
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
for i in range(7):
ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
ax[i].set_title(s[i])

j = y[3].argmax() + 1
ax[7].plot(y[6, :j], y[3, :j] * 1E2, '.-', linewidth=2, markersize=8, label=Path(f).stem)
ax[7].plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [33.5, 39.1, 42.5, 45.9, 49., 50.5],
'.-', linewidth=2, markersize=8, label='EfficientDet')
ax[7].set_xlabel('Latency (ms)')
ax[7].set_ylabel('COCO AP val')

ax[7].legend()
ax[7].set_xlim(0)
plt.savefig(f.replace('.txt', '.png'), dpi=200)


def plot_labels(labels):

Loading…
Peruuta
Tallenna