|
|
@@ -458,7 +458,7 @@ def profile_idetection(start=0, stop=0, labels=(), save_dir=''): |
|
|
|
plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200) |
|
|
|
|
|
|
|
|
|
|
|
def save_one_box(xyxy, im, file='image.jpg', gain=1.02, pad=10, square=False, BGR=False, save=True): |
|
|
|
def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True): |
|
|
|
# Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop |
|
|
|
xyxy = torch.tensor(xyxy).view(-1, 4) |
|
|
|
b = xyxy2xywh(xyxy) # boxes |
|
|
@@ -470,5 +470,7 @@ def save_one_box(xyxy, im, file='image.jpg', gain=1.02, pad=10, square=False, BG |
|
|
|
crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)] |
|
|
|
if save: |
|
|
|
file.parent.mkdir(parents=True, exist_ok=True) # make directory |
|
|
|
cv2.imwrite(str(increment_path(file).with_suffix('.jpg')), crop) |
|
|
|
f = str(increment_path(file).with_suffix('.jpg')) |
|
|
|
# cv2.imwrite(f, crop) # https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue |
|
|
|
Image.fromarray(cv2.cvtColor(crop, cv2.COLOR_BGR2RGB)).save(f, quality=95, subsampling=0) |
|
|
|
return crop |