|
|
@@ -22,7 +22,7 @@ except: |
|
|
|
|
|
|
|
|
|
|
|
# Hyperparameters |
|
|
|
hyp = {'optimizer': 'SGD', # ['adam, 'SGD', None] if none, default is SGD |
|
|
|
hyp = {'optimizer': 'SGD', # ['adam', 'SGD', None] if none, default is SGD |
|
|
|
'lr0': 0.01, # initial learning rate (SGD=1E-2, Adam=1E-3) |
|
|
|
'momentum': 0.937, # SGD momentum/Adam beta1 |
|
|
|
'weight_decay': 5e-4, # optimizer weight decay |
|
|
@@ -375,7 +375,7 @@ if __name__ == '__main__': |
|
|
|
parser.add_argument('--batch-size', type=int, default=16) |
|
|
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes. Assumes square imgs.') |
|
|
|
parser.add_argument('--rect', action='store_true', help='rectangular training') |
|
|
|
parser.add_argument('--resume', action='store_true', help='resume training from last.pt') |
|
|
|
parser.add_argument('--resume', nargs='?', const = 'get_last', default=False, help='resume training from given path/to/last.pt, or most recent run if blank.') |
|
|
|
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') |
|
|
|
parser.add_argument('--notest', action='store_true', help='only test final epoch') |
|
|
|
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check') |
|
|
@@ -390,7 +390,13 @@ if __name__ == '__main__': |
|
|
|
|
|
|
|
opt = parser.parse_args() |
|
|
|
|
|
|
|
# use given path/to/last.pt or find most recent run if no path given |
|
|
|
last = get_latest_run() if opt.resume == 'get_last' else opt.resume |
|
|
|
if last and not opt.weights: |
|
|
|
print(f'Resuming training from {last}') |
|
|
|
opt.weights = last if opt.resume and not opt.weights else opt.weights |
|
|
|
|
|
|
|
|
|
|
|
opt.cfg = check_file(opt.cfg) # check file |
|
|
|
opt.data = check_file(opt.data) # check file |
|
|
|
opt.hyp = check_file(opt.hyp) if opt.hyp else '' #check file |