Quellcode durchsuchen

Add autoShape() speed profiling (#2459)

* Add autoShape() speed profiling

* Update common.py

* Create README.md

* Update hubconf.py

* cleanuip
5.0
Glenn Jocher GitHub vor 3 Jahren
Ursprung
Commit
569757ecc0
Es konnte kein GPG-Schlüssel zu dieser Signatur gefunden werden GPG-Schlüssel-ID: 4AEE18F83AFDEB23
3 geänderte Dateien mit 17 neuen und 9 gelöschten Zeilen
  1. +2
    -2
      README.md
  2. +4
    -4
      hubconf.py
  3. +11
    -3
      models/common.py

+ 2
- 2
README.md Datei anzeigen

@@ -108,11 +108,11 @@ To run **batched inference** with YOLOv5 and [PyTorch Hub](https://github.com/ul
import torch

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')

# Images
dir = 'https://github.com/ultralytics/yolov5/raw/master/data/images/'
imgs = [dir + f for f in ('zidane.jpg', 'bus.jpg')] # batched list of images
imgs = [dir + f for f in ('zidane.jpg', 'bus.jpg')] # batch of images

# Inference
results = model(imgs)

+ 4
- 4
hubconf.py Datei anzeigen

@@ -51,7 +51,7 @@ def create(name, pretrained, channels, classes, autoshape):
raise Exception(s) from e


def yolov5s(pretrained=False, channels=3, classes=80, autoshape=True):
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True):
"""YOLOv5-small model from https://github.com/ultralytics/yolov5

Arguments:
@@ -65,7 +65,7 @@ def yolov5s(pretrained=False, channels=3, classes=80, autoshape=True):
return create('yolov5s', pretrained, channels, classes, autoshape)


def yolov5m(pretrained=False, channels=3, classes=80, autoshape=True):
def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True):
"""YOLOv5-medium model from https://github.com/ultralytics/yolov5

Arguments:
@@ -79,7 +79,7 @@ def yolov5m(pretrained=False, channels=3, classes=80, autoshape=True):
return create('yolov5m', pretrained, channels, classes, autoshape)


def yolov5l(pretrained=False, channels=3, classes=80, autoshape=True):
def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True):
"""YOLOv5-large model from https://github.com/ultralytics/yolov5

Arguments:
@@ -93,7 +93,7 @@ def yolov5l(pretrained=False, channels=3, classes=80, autoshape=True):
return create('yolov5l', pretrained, channels, classes, autoshape)


def yolov5x(pretrained=False, channels=3, classes=80, autoshape=True):
def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True):
"""YOLOv5-xlarge model from https://github.com/ultralytics/yolov5

Arguments:

+ 11
- 3
models/common.py Datei anzeigen

@@ -12,6 +12,7 @@ from PIL import Image
from utils.datasets import letterbox
from utils.general import non_max_suppression, make_divisible, scale_coords, xyxy2xywh
from utils.plots import color_list, plot_one_box
from utils.torch_utils import time_synchronized


def autopad(k, p=None): # kernel, padding
@@ -190,6 +191,7 @@ class autoShape(nn.Module):
# torch: = torch.zeros(16,3,720,1280) # BCHW
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images

t = [time_synchronized()]
p = next(self.model.parameters()) # for device and type
if isinstance(imgs, torch.Tensor): # torch
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
@@ -216,22 +218,25 @@ class autoShape(nn.Module):
x = np.stack(x, 0) if n > 1 else x[0][None] # stack
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
t.append(time_synchronized())

# Inference
with torch.no_grad():
y = self.model(x, augment, profile)[0] # forward
y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
t.append(time_synchronized())

# Post-process
y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
for i in range(n):
scale_coords(shape1, y[i][:, :4], shape0[i])
t.append(time_synchronized())

return Detections(imgs, y, files, self.names)
return Detections(imgs, y, files, t, self.names, x.shape)


class Detections:
# detections class for YOLOv5 inference results
def __init__(self, imgs, pred, files, names=None):
def __init__(self, imgs, pred, files, times, names=None, shape=None):
super(Detections, self).__init__()
d = pred[0].device # device
gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations
@@ -244,6 +249,8 @@ class Detections:
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
self.n = len(self.pred)
self.t = ((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
self.s = shape # inference BCHW shape

def display(self, pprint=False, show=False, save=False, render=False, save_dir=''):
colors = color_list()
@@ -271,6 +278,7 @@ class Detections:

def print(self):
self.display(pprint=True) # print results
print(f'Speed: %.1f/%.1f/%.1f ms pre-process/inference/NMS per image at shape {tuple(self.s)}' % tuple(self.t))

def show(self):
self.display(show=True) # show results

Laden…
Abbrechen
Speichern