|
|
@@ -9,7 +9,7 @@ import logging |
|
|
|
from contextlib import contextmanager |
|
|
|
from copy import copy |
|
|
|
from pathlib import Path |
|
|
|
from sys import platform |
|
|
|
import platform |
|
|
|
|
|
|
|
import cv2 |
|
|
|
import matplotlib |
|
|
@@ -66,7 +66,7 @@ def get_latest_run(search_dir='./runs'): |
|
|
|
|
|
|
|
def check_git_status(): |
|
|
|
# Suggest 'git pull' if repo is out of date |
|
|
|
if platform in ['linux', 'darwin'] and not os.path.isfile('/.dockerenv'): |
|
|
|
if platform.system() in ['Linux', 'Darwin'] and not os.path.isfile('/.dockerenv'): |
|
|
|
s = subprocess.check_output('if [ -d .git ]; then git fetch && git status -uno; fi', shell=True).decode('utf-8') |
|
|
|
if 'Your branch is behind' in s: |
|
|
|
print(s[s.find('Your branch is behind'):s.find('\n\n')] + '\n') |
|
|
@@ -126,7 +126,7 @@ def check_anchor_order(m): |
|
|
|
|
|
|
|
|
|
|
|
def check_file(file): |
|
|
|
# Searches for file if not found locally |
|
|
|
# Search for file if not found |
|
|
|
if os.path.isfile(file) or file == '': |
|
|
|
return file |
|
|
|
else: |
|
|
@@ -137,21 +137,25 @@ def check_file(file): |
|
|
|
|
|
|
|
def check_dataset(dict): |
|
|
|
# Download dataset if not found |
|
|
|
train, val = os.path.abspath(dict['train']), os.path.abspath(dict['val']) # data paths |
|
|
|
if not (os.path.exists(train) and os.path.exists(val)): |
|
|
|
print('\nWARNING: Dataset not found, nonexistant paths: %s' % [train, val]) |
|
|
|
if 'download' in dict: |
|
|
|
s = dict['download'] |
|
|
|
print('Attempting autodownload from: %s' % s) |
|
|
|
if s.startswith('http') and s.endswith('.zip'): # URL |
|
|
|
f = Path(s).name # filename |
|
|
|
torch.hub.download_url_to_file(s, f) |
|
|
|
r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) |
|
|
|
else: # bash script |
|
|
|
r = os.system(s) |
|
|
|
print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value |
|
|
|
else: |
|
|
|
Exception('Dataset autodownload unavailable.') |
|
|
|
val, s = dict.get('val'), dict.get('download') |
|
|
|
if val and len(val): |
|
|
|
val = [os.path.abspath(x) for x in (val if isinstance(val, list) else [val])] # val path |
|
|
|
if not all(os.path.exists(x) for x in val): |
|
|
|
print('\nWARNING: Dataset not found, nonexistant paths: %s' % [*val]) |
|
|
|
if s and len(s): # download script |
|
|
|
print('Attempting autodownload from: %s' % s) |
|
|
|
if s.startswith('http') and s.endswith('.zip'): # URL |
|
|
|
f = Path(s).name # filename |
|
|
|
if platform.system() == 'Darwin': # avoid MacOS python requests certificate error |
|
|
|
os.system('curl -L %s -o %s' % (s, f)) |
|
|
|
else: |
|
|
|
torch.hub.download_url_to_file(s, f) |
|
|
|
r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip |
|
|
|
else: # bash script |
|
|
|
r = os.system(s) |
|
|
|
print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value |
|
|
|
else: |
|
|
|
raise Exception('Dataset not found.') |
|
|
|
|
|
|
|
|
|
|
|
def make_divisible(x, divisor): |