Procházet zdrojové kódy

Add `DWConvTranspose2d()` module (#7881)

* Add DWConvTranspose2d() module

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Add DWConvTranspose2d() module

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fix

* Fix

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
modifyDataloader
Glenn Jocher GitHub před 2 roky
rodič
revize
5774a1514d
V databázi nebyl nalezen žádný známý klíč pro tento podpis ID GPG klíče: 4AEE18F83AFDEB23
3 změnil soubory, kde provedl 43 přidání a 12 odebrání
  1. +6
    -0
      models/common.py
  2. +36
    -11
      models/tf.py
  3. +1
    -1
      models/yolo.py

+ 6
- 0
models/common.py Zobrazit soubor

@@ -56,6 +56,12 @@ class DWConv(Conv):
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)


class DWConvTranspose2d(nn.ConvTranspose2d):
# Depth-wise transpose convolution class
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out
super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))


class TransformerLayer(nn.Module):
# Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
def __init__(self, c, num_heads):

+ 36
- 11
models/tf.py Zobrazit soubor

@@ -27,7 +27,8 @@ import torch
import torch.nn as nn
from tensorflow import keras

from models.common import C3, SPP, SPPF, Bottleneck, BottleneckCSP, C3x, Concat, Conv, CrossConv, DWConv, Focus, autopad
from models.common import (C3, SPP, SPPF, Bottleneck, BottleneckCSP, C3x, Concat, Conv, CrossConv, DWConv,
DWConvTranspose2d, Focus, autopad)
from models.experimental import MixConv2d, attempt_load
from models.yolo import Detect
from utils.activations import SiLU
@@ -108,6 +109,29 @@ class TFDWConv(keras.layers.Layer):
return self.act(self.bn(self.conv(inputs)))


class TFDWConvTranspose2d(keras.layers.Layer):
# Depthwise ConvTranspose2d
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0, w=None):
# ch_in, ch_out, weights, kernel, stride, padding, groups
super().__init__()
assert c1 == c2, f'TFDWConv() output={c2} must be equal to input={c1} channels'
assert k == 4 and p1 == 1, 'TFDWConv() only valid for k=4 and p1=1'
weight, bias = w.weight.permute(2, 3, 1, 0).numpy(), w.bias.numpy()
self.c1 = c1
self.conv = [
keras.layers.Conv2DTranspose(filters=1,
kernel_size=k,
strides=s,
padding='VALID',
output_padding=p2,
use_bias=True,
kernel_initializer=keras.initializers.Constant(weight[..., i:i + 1]),
bias_initializer=keras.initializers.Constant(bias[i])) for i in range(c1)]

def call(self, inputs):
return tf.concat([m(x) for m, x in zip(self.conv, tf.split(inputs, self.c1, 3))], 3)[:, 1:-1, 1:-1]


class TFFocus(keras.layers.Layer):
# Focus wh information into c-space
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
@@ -152,15 +176,14 @@ class TFConv2d(keras.layers.Layer):
def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
super().__init__()
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
self.conv = keras.layers.Conv2D(
c2,
k,
s,
'VALID',
use_bias=bias,
kernel_initializer=keras.initializers.Constant(w.weight.permute(2, 3, 1, 0).numpy()),
bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None,
)
self.conv = keras.layers.Conv2D(filters=c2,
kernel_size=k,
strides=s,
padding='VALID',
use_bias=bias,
kernel_initializer=keras.initializers.Constant(
w.weight.permute(2, 3, 1, 0).numpy()),
bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None)

def call(self, inputs):
return self.conv(inputs)
@@ -340,7 +363,9 @@ def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3)
pass

n = max(round(n * gd), 1) if n > 1 else n # depth gain
if m in [nn.Conv2d, Conv, Bottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, C3x]:
if m in [
nn.Conv2d, Conv, DWConv, DWConvTranspose2d, Bottleneck, SPP, SPPF, MixConv2d, Focus, CrossConv,
BottleneckCSP, C3, C3x]:
c1, c2 = ch[f], args[0]
c2 = make_divisible(c2 * gw, 8) if c2 != no else c2


+ 1
- 1
models/yolo.py Zobrazit soubor

@@ -266,7 +266,7 @@ def parse_model(d, ch): # model_dict, input_channels(3)

n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
if m in (Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, C3x):
BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x):
c1, c2 = ch[f], args[0]
if c2 != no: # if not output
c2 = make_divisible(c2 * gw, 8)

Načítá se…
Zrušit
Uložit