瀏覽代碼

Add `DWConvTranspose2d()` module (#7881)

* Add DWConvTranspose2d() module

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Add DWConvTranspose2d() module

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fix

* Fix

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
modifyDataloader
Glenn Jocher GitHub 2 年之前
父節點
當前提交
5774a1514d
沒有發現已知的金鑰在資料庫的簽署中 GPG 金鑰 ID: 4AEE18F83AFDEB23
共有 3 個檔案被更改,包括 43 行新增12 行删除
  1. +6
    -0
      models/common.py
  2. +36
    -11
      models/tf.py
  3. +1
    -1
      models/yolo.py

+ 6
- 0
models/common.py 查看文件

@@ -56,6 +56,12 @@ class DWConv(Conv):
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)


class DWConvTranspose2d(nn.ConvTranspose2d):
# Depth-wise transpose convolution class
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out
super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))


class TransformerLayer(nn.Module):
# Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
def __init__(self, c, num_heads):

+ 36
- 11
models/tf.py 查看文件

@@ -27,7 +27,8 @@ import torch
import torch.nn as nn
from tensorflow import keras

from models.common import C3, SPP, SPPF, Bottleneck, BottleneckCSP, C3x, Concat, Conv, CrossConv, DWConv, Focus, autopad
from models.common import (C3, SPP, SPPF, Bottleneck, BottleneckCSP, C3x, Concat, Conv, CrossConv, DWConv,
DWConvTranspose2d, Focus, autopad)
from models.experimental import MixConv2d, attempt_load
from models.yolo import Detect
from utils.activations import SiLU
@@ -108,6 +109,29 @@ class TFDWConv(keras.layers.Layer):
return self.act(self.bn(self.conv(inputs)))


class TFDWConvTranspose2d(keras.layers.Layer):
# Depthwise ConvTranspose2d
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0, w=None):
# ch_in, ch_out, weights, kernel, stride, padding, groups
super().__init__()
assert c1 == c2, f'TFDWConv() output={c2} must be equal to input={c1} channels'
assert k == 4 and p1 == 1, 'TFDWConv() only valid for k=4 and p1=1'
weight, bias = w.weight.permute(2, 3, 1, 0).numpy(), w.bias.numpy()
self.c1 = c1
self.conv = [
keras.layers.Conv2DTranspose(filters=1,
kernel_size=k,
strides=s,
padding='VALID',
output_padding=p2,
use_bias=True,
kernel_initializer=keras.initializers.Constant(weight[..., i:i + 1]),
bias_initializer=keras.initializers.Constant(bias[i])) for i in range(c1)]

def call(self, inputs):
return tf.concat([m(x) for m, x in zip(self.conv, tf.split(inputs, self.c1, 3))], 3)[:, 1:-1, 1:-1]


class TFFocus(keras.layers.Layer):
# Focus wh information into c-space
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
@@ -152,15 +176,14 @@ class TFConv2d(keras.layers.Layer):
def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
super().__init__()
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
self.conv = keras.layers.Conv2D(
c2,
k,
s,
'VALID',
use_bias=bias,
kernel_initializer=keras.initializers.Constant(w.weight.permute(2, 3, 1, 0).numpy()),
bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None,
)
self.conv = keras.layers.Conv2D(filters=c2,
kernel_size=k,
strides=s,
padding='VALID',
use_bias=bias,
kernel_initializer=keras.initializers.Constant(
w.weight.permute(2, 3, 1, 0).numpy()),
bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None)

def call(self, inputs):
return self.conv(inputs)
@@ -340,7 +363,9 @@ def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3)
pass

n = max(round(n * gd), 1) if n > 1 else n # depth gain
if m in [nn.Conv2d, Conv, Bottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, C3x]:
if m in [
nn.Conv2d, Conv, DWConv, DWConvTranspose2d, Bottleneck, SPP, SPPF, MixConv2d, Focus, CrossConv,
BottleneckCSP, C3, C3x]:
c1, c2 = ch[f], args[0]
c2 = make_divisible(c2 * gw, 8) if c2 != no else c2


+ 1
- 1
models/yolo.py 查看文件

@@ -266,7 +266,7 @@ def parse_model(d, ch): # model_dict, input_channels(3)

n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
if m in (Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, C3x):
BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x):
c1, c2 = ch[f], args[0]
if c2 != no: # if not output
c2 = make_divisible(c2 * gw, 8)

Loading…
取消
儲存