@@ -11,7 +11,7 @@ from models.experimental import attempt_load | |||
from utils.datasets import LoadStreams, LoadImages | |||
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \ | |||
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path, save_one_box | |||
from utils.plots import plot_one_box | |||
from utils.plots import colors, plot_one_box | |||
from utils.torch_utils import select_device, load_classifier, time_synchronized | |||
@@ -34,6 +34,7 @@ def detect(opt): | |||
model = attempt_load(weights, map_location=device) # load FP32 model | |||
stride = int(model.stride.max()) # model stride | |||
imgsz = check_img_size(imgsz, s=stride) # check img_size | |||
names = model.module.names if hasattr(model, 'module') else model.names # get class names | |||
if half: | |||
model.half() # to FP16 | |||
@@ -52,10 +53,6 @@ def detect(opt): | |||
else: | |||
dataset = LoadImages(source, img_size=imgsz, stride=stride) | |||
# Get names and colors | |||
names = model.module.names if hasattr(model, 'module') else model.names | |||
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names] | |||
# Run inference | |||
if device.type != 'cpu': | |||
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once | |||
@@ -112,7 +109,7 @@ def detect(opt): | |||
c = int(cls) # integer class | |||
label = None if opt.hide_labels else (names[c] if opt.hide_conf else f'{names[c]} {conf:.2f}') | |||
plot_one_box(xyxy, im0, label=label, color=colors[c], line_thickness=opt.line_thickness) | |||
plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=opt.line_thickness) | |||
if opt.save_crop: | |||
save_one_box(xyxy, im0s, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) | |||
@@ -14,7 +14,7 @@ from torch.cuda import amp | |||
from utils.datasets import letterbox | |||
from utils.general import non_max_suppression, make_divisible, scale_coords, increment_path, xyxy2xywh, save_one_box | |||
from utils.plots import color_list, plot_one_box | |||
from utils.plots import colors, plot_one_box | |||
from utils.torch_utils import time_synchronized | |||
@@ -312,7 +312,6 @@ class Detections: | |||
self.s = shape # inference BCHW shape | |||
def display(self, pprint=False, show=False, save=False, crop=False, render=False, save_dir=Path('')): | |||
colors = color_list() | |||
for i, (im, pred) in enumerate(zip(self.imgs, self.pred)): | |||
str = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' | |||
if pred is not None: | |||
@@ -325,7 +324,7 @@ class Detections: | |||
if crop: | |||
save_one_box(box, im, file=save_dir / 'crops' / self.names[int(cls)] / self.files[i]) | |||
else: # all others | |||
plot_one_box(box, im, label=label, color=colors[int(cls) % 10]) | |||
plot_one_box(box, im, label=label, color=colors(cls)) | |||
im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np | |||
if pprint: |
@@ -26,12 +26,22 @@ matplotlib.rc('font', **{'size': 11}) | |||
matplotlib.use('Agg') # for writing to files only | |||
def color_list(): | |||
# Return first 10 plt colors as (r,g,b) https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb | |||
def hex2rgb(h): | |||
class Colors: | |||
# Ultralytics color palette https://ultralytics.com/ | |||
def __init__(self): | |||
self.palette = [self.hex2rgb(c) for c in matplotlib.colors.TABLEAU_COLORS.values()] | |||
self.n = len(self.palette) | |||
def __call__(self, i, bgr=False): | |||
c = self.palette[int(i) % self.n] | |||
return (c[2], c[1], c[0]) if bgr else c | |||
@staticmethod | |||
def hex2rgb(h): # rgb order (PIL) | |||
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) | |||
return [hex2rgb(h) for h in matplotlib.colors.TABLEAU_COLORS.values()] # or BASE_ (8), CSS4_ (148), XKCD_ (949) | |||
colors = Colors() # create instance for 'from utils.plots import colors' | |||
def hist2d(x, y, n=100): | |||
@@ -137,7 +147,6 @@ def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max | |||
h = math.ceil(scale_factor * h) | |||
w = math.ceil(scale_factor * w) | |||
colors = color_list() # list of colors | |||
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init | |||
for i, img in enumerate(images): | |||
if i == max_subplots: # if last batch has fewer images than we expect | |||
@@ -168,7 +177,7 @@ def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max | |||
boxes[[1, 3]] += block_y | |||
for j, box in enumerate(boxes.T): | |||
cls = int(classes[j]) | |||
color = colors[cls % len(colors)] | |||
color = colors(cls) | |||
cls = names[cls] if names else cls | |||
if labels or conf[j] > 0.25: # 0.25 conf thresh | |||
label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j]) | |||
@@ -276,7 +285,6 @@ def plot_labels(labels, names=(), save_dir=Path(''), loggers=None): | |||
print('Plotting labels... ') | |||
c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes | |||
nc = int(c.max() + 1) # number of classes | |||
colors = color_list() | |||
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height']) | |||
# seaborn correlogram | |||
@@ -302,7 +310,7 @@ def plot_labels(labels, names=(), save_dir=Path(''), loggers=None): | |||
labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000 | |||
img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255) | |||
for cls, *box in labels[:1000]: | |||
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors[int(cls) % 10]) # plot | |||
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot | |||
ax[1].imshow(img) | |||
ax[1].axis('off') | |||