|
|
@@ -53,18 +53,23 @@ def check_img_size(img_size, s=32): |
|
|
|
|
|
|
|
|
|
|
|
def check_anchors(dataset, model, thr=4.0, imgsz=640): |
|
|
|
# Check best possible recall of dataset with current anchors |
|
|
|
# Check anchor fit to data, recompute if necessary |
|
|
|
print('\nAnalyzing anchors... ', end='') |
|
|
|
anchors = model.module.model[-1].anchor_grid if hasattr(model, 'module') else model.model[-1].anchor_grid |
|
|
|
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True) |
|
|
|
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])).float() # wh |
|
|
|
ratio = wh[:, None] / anchors.view(-1, 2).cpu()[None] # ratio |
|
|
|
m = torch.max(ratio, 1. / ratio).max(2)[0] # max ratio |
|
|
|
bpr = (m.min(1)[0] < thr).float().mean() # best possible recall |
|
|
|
mr = (m < thr).float().mean() # match ratio |
|
|
|
print(('AutoAnchor labels:' + '%10s' * 6) % ('n', 'mean', 'min', 'max', 'matching', 'recall')) |
|
|
|
print((' ' + '%10.4g' * 6) % (wh.shape[0], wh.mean(), wh.min(), wh.max(), mr, bpr)) |
|
|
|
assert bpr > 0.9, 'Best possible recall %.3g (BPR) below 0.9 threshold. Training cancelled. ' \ |
|
|
|
'Compute new anchors with utils.utils.kmeans_anchors() and update model before training.' % bpr |
|
|
|
# mr = (m < thr).float().mean() # match ratio |
|
|
|
|
|
|
|
print('Best Possible Recall (BPR) = %.3f' % bpr, end='') |
|
|
|
if bpr < 0.99: # threshold to recompute |
|
|
|
print('. Generating new anchors for improved recall, please wait...' % bpr) |
|
|
|
new_anchors = kmean_anchors(dataset, n=9, img_size=640, thr=4.0, gen=1000, verbose=False) |
|
|
|
anchors[:] = torch.tensor(new_anchors).view_as(anchors).type_as(anchors) |
|
|
|
print('New anchors saved to model. Update model *.yaml to use these anchors in the future.') |
|
|
|
print('') # newline |
|
|
|
|
|
|
|
|
|
|
|
def check_file(file): |
|
|
@@ -689,14 +694,14 @@ def coco_single_class_labels(path='../coco/labels/train2014/', label_class=43): |
|
|
|
shutil.copyfile(src=img_file, dst='new/images/' + Path(file).name.replace('txt', 'jpg')) # copy images |
|
|
|
|
|
|
|
|
|
|
|
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=(640, 640), thr=0.20, gen=1000): |
|
|
|
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True): |
|
|
|
""" Creates kmeans-evolved anchors from training dataset |
|
|
|
|
|
|
|
Arguments: |
|
|
|
path: path to dataset *.yaml |
|
|
|
path: path to dataset *.yaml, or a loaded dataset |
|
|
|
n: number of anchors |
|
|
|
img_size: (min, max) image size used for multi-scale training (can be same values) |
|
|
|
thr: IoU threshold hyperparameter used for training (0.0 - 1.0) |
|
|
|
img_size: image size used for training |
|
|
|
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0 |
|
|
|
gen: generations to evolve anchors using genetic algorithm |
|
|
|
|
|
|
|
Return: |
|
|
@@ -705,52 +710,41 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=(640, 640), thr=0.20 |
|
|
|
Usage: |
|
|
|
from utils.utils import *; _ = kmean_anchors() |
|
|
|
""" |
|
|
|
thr = 1. / thr |
|
|
|
|
|
|
|
def metric(k): # compute metrics |
|
|
|
r = wh[:, None] / k[None] |
|
|
|
x = torch.min(r, 1. / r).min(2)[0] # ratio metric |
|
|
|
# x = wh_iou(wh, torch.tensor(k)) # iou metric |
|
|
|
return x, x.max(1)[0] # x, best_x |
|
|
|
|
|
|
|
from utils.datasets import LoadImagesAndLabels |
|
|
|
def fitness(k): # mutation fitness |
|
|
|
_, best = metric(k) |
|
|
|
return (best * (best > thr).float()).mean() # fitness |
|
|
|
|
|
|
|
def print_results(k): |
|
|
|
k = k[np.argsort(k.prod(1))] # sort small to large |
|
|
|
iou = wh_iou(wh, torch.Tensor(k)) |
|
|
|
max_iou = iou.max(1)[0] |
|
|
|
bpr, aat = (max_iou > thr).float().mean(), (iou > thr).float().mean() * n # best possible recall, anch > thr |
|
|
|
|
|
|
|
# thr = 5.0 |
|
|
|
# r = wh[:, None] / k[None] |
|
|
|
# ar = torch.max(r, 1. / r).max(2)[0] |
|
|
|
# max_ar = ar.min(1)[0] |
|
|
|
# bpr, aat = (max_ar < thr).float().mean(), (ar < thr).float().mean() * n # best possible recall, anch > thr |
|
|
|
|
|
|
|
print('%.2f iou_thr: %.3f best possible recall, %.2f anchors > thr' % (thr, bpr, aat)) |
|
|
|
print('n=%g, img_size=%s, IoU_all=%.3f/%.3f-mean/best, IoU>thr=%.3f-mean: ' % |
|
|
|
(n, img_size, iou.mean(), max_iou.mean(), iou[iou > thr].mean()), end='') |
|
|
|
x, best = metric(k) |
|
|
|
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr |
|
|
|
print('thr=%.2f: %.3f best possible recall, %.2f anchors past thr' % (thr, bpr, aat)) |
|
|
|
print('n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thr=%.3f-mean: ' % |
|
|
|
(n, img_size, x.mean(), best.mean(), x[x > thr].mean()), end='') |
|
|
|
for i, x in enumerate(k): |
|
|
|
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg |
|
|
|
return k |
|
|
|
|
|
|
|
def fitness(k): # mutation fitness |
|
|
|
iou = wh_iou(wh, torch.Tensor(k)) # iou |
|
|
|
max_iou = iou.max(1)[0] |
|
|
|
return (max_iou * (max_iou > thr).float()).mean() # product |
|
|
|
|
|
|
|
# def fitness_ratio(k): # mutation fitness |
|
|
|
# # wh(5316,2), k(9,2) |
|
|
|
# r = wh[:, None] / k[None] |
|
|
|
# x = torch.max(r, 1. / r).max(2)[0] |
|
|
|
# m = x.min(1)[0] |
|
|
|
# return 1. / (m * (m < 5).float()).mean() # product |
|
|
|
if isinstance(path, str): # *.yaml file |
|
|
|
with open(path) as f: |
|
|
|
data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict |
|
|
|
from utils.datasets import LoadImagesAndLabels |
|
|
|
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True) |
|
|
|
else: |
|
|
|
dataset = path # dataset |
|
|
|
|
|
|
|
# Get label wh |
|
|
|
wh = [] |
|
|
|
with open(path) as f: |
|
|
|
data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict |
|
|
|
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True) |
|
|
|
nr = 1 if img_size[0] == img_size[1] else 3 # number augmentation repetitions |
|
|
|
for s, l in zip(dataset.shapes, dataset.labels): |
|
|
|
# wh.append(l[:, 3:5] * (s / s.max())) # image normalized to letterbox normalized wh |
|
|
|
wh.append(l[:, 3:5] * s) # image normalized to pixels |
|
|
|
wh = np.concatenate(wh, 0).repeat(nr, axis=0) # augment 3x |
|
|
|
# wh *= np.random.uniform(img_size[0], img_size[1], size=(wh.shape[0], 1)) # normalized to pixels (multi-scale) |
|
|
|
wh = wh[(wh > 2.0).all(1)] # remove below threshold boxes (< 2 pixels wh) |
|
|
|
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True) |
|
|
|
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])).float() # wh |
|
|
|
wh = wh[(wh > 2.0).all(1)].numpy() # filter > 2 pixels |
|
|
|
|
|
|
|
# Kmeans calculation |
|
|
|
from scipy.cluster.vq import kmeans |
|
|
@@ -758,10 +752,10 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=(640, 640), thr=0.20 |
|
|
|
s = wh.std(0) # sigmas for whitening |
|
|
|
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance |
|
|
|
k *= s |
|
|
|
wh = torch.Tensor(wh) |
|
|
|
wh = torch.tensor(wh) |
|
|
|
k = print_results(k) |
|
|
|
|
|
|
|
# # Plot |
|
|
|
# Plot |
|
|
|
# k, d = [None] * 20, [None] * 20 |
|
|
|
# for i in tqdm(range(1, 21)): |
|
|
|
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance |
|
|
@@ -777,7 +771,7 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=(640, 640), thr=0.20 |
|
|
|
# Evolve |
|
|
|
npr = np.random |
|
|
|
f, sh, mp, s = fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma |
|
|
|
for _ in tqdm(range(gen), desc='Evolving anchors'): |
|
|
|
for _ in tqdm(range(gen), desc='Evolving anchors with Genetic Algorithm:'): |
|
|
|
v = np.ones(sh) |
|
|
|
while (v == 1).all(): # mutate until a change occurs (prevent duplicates) |
|
|
|
v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) |
|
|
@@ -785,7 +779,8 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=(640, 640), thr=0.20 |
|
|
|
fg = fitness(kg) |
|
|
|
if fg > f: |
|
|
|
f, k = fg, kg.copy() |
|
|
|
print_results(k) |
|
|
|
if verbose: |
|
|
|
print_results(k) |
|
|
|
k = print_results(k) |
|
|
|
return k |
|
|
|
|