|
|
@@ -38,7 +38,7 @@ def test(data, |
|
|
|
plots=True, |
|
|
|
wandb_logger=None, |
|
|
|
compute_loss=None, |
|
|
|
half_precision=True, |
|
|
|
half=True, |
|
|
|
opt=None): |
|
|
|
# Initialize/load model and set device |
|
|
|
training = model is not None |
|
|
@@ -63,7 +63,7 @@ def test(data, |
|
|
|
# model = nn.DataParallel(model) |
|
|
|
|
|
|
|
# Half |
|
|
|
half = device.type != 'cpu' and half_precision # half precision only supported on CUDA |
|
|
|
half &= device.type != 'cpu' # half precision only supported on CUDA |
|
|
|
if half: |
|
|
|
model.half() |
|
|
|
|
|
|
@@ -95,20 +95,22 @@ def test(data, |
|
|
|
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)} |
|
|
|
coco91class = coco80_to_coco91_class() |
|
|
|
s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95') |
|
|
|
p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0. |
|
|
|
p, r, f1, mp, mr, map50, map, t0, t1, t2 = 0., 0., 0., 0., 0., 0., 0., 0., 0., 0. |
|
|
|
loss = torch.zeros(3, device=device) |
|
|
|
jdict, stats, ap, ap_class, wandb_images = [], [], [], [], [] |
|
|
|
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): |
|
|
|
t_ = time_synchronized() |
|
|
|
img = img.to(device, non_blocking=True) |
|
|
|
img = img.half() if half else img.float() # uint8 to fp16/32 |
|
|
|
img /= 255.0 # 0 - 255 to 0.0 - 1.0 |
|
|
|
targets = targets.to(device) |
|
|
|
nb, _, height, width = img.shape # batch size, channels, height, width |
|
|
|
t = time_synchronized() |
|
|
|
t0 += t - t_ |
|
|
|
|
|
|
|
# Run model |
|
|
|
t = time_synchronized() |
|
|
|
out, train_out = model(img, augment=augment) # inference and training outputs |
|
|
|
t0 += time_synchronized() - t |
|
|
|
t1 += time_synchronized() - t |
|
|
|
|
|
|
|
# Compute loss |
|
|
|
if compute_loss: |
|
|
@@ -119,7 +121,7 @@ def test(data, |
|
|
|
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling |
|
|
|
t = time_synchronized() |
|
|
|
out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls) |
|
|
|
t1 += time_synchronized() - t |
|
|
|
t2 += time_synchronized() - t |
|
|
|
|
|
|
|
# Statistics per image |
|
|
|
for si, pred in enumerate(out): |
|
|
@@ -236,9 +238,10 @@ def test(data, |
|
|
|
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) |
|
|
|
|
|
|
|
# Print speeds |
|
|
|
t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple |
|
|
|
t = tuple(x / seen * 1E3 for x in (t0, t1, t2)) # speeds per image |
|
|
|
if not training: |
|
|
|
print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t) |
|
|
|
shape = (batch_size, 3, imgsz, imgsz) |
|
|
|
print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t) |
|
|
|
|
|
|
|
# Plots |
|
|
|
if plots: |
|
|
@@ -327,24 +330,25 @@ if __name__ == '__main__': |
|
|
|
save_txt=opt.save_txt | opt.save_hybrid, |
|
|
|
save_hybrid=opt.save_hybrid, |
|
|
|
save_conf=opt.save_conf, |
|
|
|
half_precision=opt.half, |
|
|
|
half=opt.half, |
|
|
|
opt=opt |
|
|
|
) |
|
|
|
|
|
|
|
elif opt.task == 'speed': # speed benchmarks |
|
|
|
for w in opt.weights: |
|
|
|
test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0.45, save_json=False, plots=False, opt=opt) |
|
|
|
for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]: |
|
|
|
test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0.45, save_json=False, plots=False, half=True, |
|
|
|
opt=opt) |
|
|
|
|
|
|
|
elif opt.task == 'study': # run over a range of settings and save/plot |
|
|
|
# python test.py --task study --data coco.yaml --iou 0.7 --weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt |
|
|
|
x = list(range(256, 1536 + 128, 128)) # x axis (image sizes) |
|
|
|
for w in opt.weights: |
|
|
|
for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]: |
|
|
|
f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to |
|
|
|
y = [] # y axis |
|
|
|
for i in x: # img-size |
|
|
|
print(f'\nRunning {f} point {i}...') |
|
|
|
r, _, t = test(opt.data, w, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json, |
|
|
|
plots=False, opt=opt) |
|
|
|
plots=False, half=True, opt=opt) |
|
|
|
y.append(r + t) # results and times |
|
|
|
np.savetxt(f, y, fmt='%10.4g') # save |
|
|
|
os.system('zip -r study.zip study_*.txt') |