|
|
@@ -79,7 +79,6 @@ def train(hyp): |
|
|
|
# Create model |
|
|
|
model = Model(opt.cfg).to(device) |
|
|
|
assert model.md['nc'] == nc, '%s nc=%g classes but %s nc=%g classes' % (opt.data, nc, opt.cfg, model.md['nc']) |
|
|
|
|
|
|
|
|
|
|
|
# Image sizes |
|
|
|
gs = int(max(model.stride)) # grid size (max stride) |
|
|
@@ -133,7 +132,13 @@ def train(hyp): |
|
|
|
with open(results_file, 'w') as file: |
|
|
|
file.write(ckpt['training_results']) # write results.txt |
|
|
|
|
|
|
|
# epochs |
|
|
|
start_epoch = ckpt['epoch'] + 1 |
|
|
|
if epochs < start_epoch: |
|
|
|
print('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' % |
|
|
|
(opt.weights, ckpt['epoch'], epochs)) |
|
|
|
epochs += ckpt['epoch'] # finetune additional epochs |
|
|
|
|
|
|
|
del ckpt |
|
|
|
|
|
|
|
# Mixed precision training https://github.com/NVIDIA/apex |
|
|
@@ -147,6 +152,15 @@ def train(hyp): |
|
|
|
# https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822 |
|
|
|
# plot_lr_scheduler(optimizer, scheduler, epochs) |
|
|
|
|
|
|
|
# Initialize distributed training |
|
|
|
if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available(): |
|
|
|
dist.init_process_group(backend='nccl', # distributed backend |
|
|
|
init_method='tcp://127.0.0.1:9999', # init method |
|
|
|
world_size=1, # number of nodes |
|
|
|
rank=0) # node rank |
|
|
|
model = torch.nn.parallel.DistributedDataParallel(model) |
|
|
|
# pip install torch==1.4.0+cu100 torchvision==0.5.0+cu100 -f https://download.pytorch.org/whl/torch_stable.html |
|
|
|
|
|
|
|
# Trainloader |
|
|
|
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, |
|
|
|
hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect) |
|
|
@@ -155,7 +169,7 @@ def train(hyp): |
|
|
|
|
|
|
|
# Testloader |
|
|
|
testloader = create_dataloader(test_path, imgsz_test, batch_size, gs, opt, |
|
|
|
hyp=hyp, augment=False, cache=opt.cache_images, rect=True)[0] |
|
|
|
hyp=hyp, augment=False, cache=opt.cache_images, rect=True)[0] |
|
|
|
|
|
|
|
# Model parameters |
|
|
|
hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset |
|
|
@@ -164,15 +178,6 @@ def train(hyp): |
|
|
|
model.gr = 1.0 # giou loss ratio (obj_loss = 1.0 or giou) |
|
|
|
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights |
|
|
|
model.names = data_dict['names'] |
|
|
|
|
|
|
|
# Initialize distributed training |
|
|
|
if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available(): |
|
|
|
dist.init_process_group(backend='nccl', # distributed backend |
|
|
|
init_method='tcp://127.0.0.1:9999', # init method |
|
|
|
world_size=1, # number of nodes |
|
|
|
rank=0) # node rank |
|
|
|
model = torch.nn.parallel.DistributedDataParallel(model) |
|
|
|
# pip install torch==1.4.0+cu100 torchvision==0.5.0+cu100 -f https://download.pytorch.org/whl/torch_stable.html |
|
|
|
|
|
|
|
# Class frequency |
|
|
|
labels = np.concatenate(dataset.labels, 0) |
|
|
@@ -373,7 +378,7 @@ if __name__ == '__main__': |
|
|
|
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%') |
|
|
|
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset') |
|
|
|
opt = parser.parse_args() |
|
|
|
opt.weights = last if opt.resume else opt.weights |
|
|
|
opt.weights = last if opt.resume and not opt.weights else opt.weights |
|
|
|
opt.cfg = check_file(opt.cfg) # check file |
|
|
|
opt.data = check_file(opt.data) # check file |
|
|
|
print(opt) |