|
|
@@ -1,15 +1,15 @@ |
|
|
|
import glob |
|
|
|
import logging |
|
|
|
import math |
|
|
|
import os |
|
|
|
import platform |
|
|
|
import random |
|
|
|
import shutil |
|
|
|
import subprocess |
|
|
|
import time |
|
|
|
import logging |
|
|
|
from contextlib import contextmanager |
|
|
|
from copy import copy |
|
|
|
from pathlib import Path |
|
|
|
import platform |
|
|
|
|
|
|
|
import cv2 |
|
|
|
import matplotlib |
|
|
@@ -339,19 +339,19 @@ def compute_ap(recall, precision): |
|
|
|
return ap |
|
|
|
|
|
|
|
|
|
|
|
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False): |
|
|
|
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-12): |
|
|
|
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 |
|
|
|
box2 = box2.T |
|
|
|
|
|
|
|
# Get the coordinates of bounding boxes |
|
|
|
if x1y1x2y2: # x1, y1, x2, y2 = box1 |
|
|
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] |
|
|
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] |
|
|
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2] + eps, box1[3] + eps |
|
|
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2] + eps, box2[3] + eps |
|
|
|
else: # transform from xywh to xyxy |
|
|
|
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 |
|
|
|
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 |
|
|
|
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 |
|
|
|
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 |
|
|
|
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 + eps |
|
|
|
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 + eps |
|
|
|
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 + eps |
|
|
|
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 + eps |
|
|
|
|
|
|
|
# Intersection area |
|
|
|
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ |
|
|
@@ -360,18 +360,18 @@ def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False): |
|
|
|
# Union Area |
|
|
|
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 |
|
|
|
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 |
|
|
|
union = (w1 * h1 + 1e-16) + w2 * h2 - inter |
|
|
|
union = w1 * h1 + w2 * h2 - inter |
|
|
|
|
|
|
|
iou = inter / union # iou |
|
|
|
if GIoU or DIoU or CIoU: |
|
|
|
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width |
|
|
|
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height |
|
|
|
if GIoU: # Generalized IoU https://arxiv.org/pdf/1902.09630.pdf |
|
|
|
c_area = cw * ch + 1e-16 # convex area |
|
|
|
c_area = cw * ch # convex area |
|
|
|
return iou - (c_area - union) / c_area # GIoU |
|
|
|
if DIoU or CIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 |
|
|
|
# convex diagonal squared |
|
|
|
c2 = cw ** 2 + ch ** 2 + 1e-16 |
|
|
|
c2 = cw ** 2 + ch ** 2 |
|
|
|
# centerpoint distance squared |
|
|
|
rho2 = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2)) ** 2 / 4 + ((b2_y1 + b2_y2) - (b1_y1 + b1_y2)) ** 2 / 4 |
|
|
|
if DIoU: |
|
|
@@ -379,7 +379,7 @@ def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False): |
|
|
|
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 |
|
|
|
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) |
|
|
|
with torch.no_grad(): |
|
|
|
alpha = v / (1 - iou + v + 1e-16) |
|
|
|
alpha = v / ((1 + eps) - iou + v) |
|
|
|
return iou - (rho2 / c2 + v * alpha) # CIoU |
|
|
|
|
|
|
|
return iou |