Browse Source

CIoU nan bug fix (#736)

5.0
Glenn Jocher 4 years ago
parent
commit
5e0b90de8f
1 changed files with 13 additions and 13 deletions
  1. +13
    -13
      utils/general.py

+ 13
- 13
utils/general.py View File

@@ -1,15 +1,15 @@
import glob
import logging
import math
import os
import platform
import random
import shutil
import subprocess
import time
import logging
from contextlib import contextmanager
from copy import copy
from pathlib import Path
import platform

import cv2
import matplotlib
@@ -339,19 +339,19 @@ def compute_ap(recall, precision):
return ap


def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False):
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-12):
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
box2 = box2.T

# Get the coordinates of bounding boxes
if x1y1x2y2: # x1, y1, x2, y2 = box1
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2] + eps, box1[3] + eps
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2] + eps, box2[3] + eps
else: # transform from xywh to xyxy
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 + eps
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 + eps
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 + eps
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 + eps

# Intersection area
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
@@ -360,18 +360,18 @@ def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False):
# Union Area
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1
union = (w1 * h1 + 1e-16) + w2 * h2 - inter
union = w1 * h1 + w2 * h2 - inter

iou = inter / union # iou
if GIoU or DIoU or CIoU:
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
if GIoU: # Generalized IoU https://arxiv.org/pdf/1902.09630.pdf
c_area = cw * ch + 1e-16 # convex area
c_area = cw * ch # convex area
return iou - (c_area - union) / c_area # GIoU
if DIoU or CIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
# convex diagonal squared
c2 = cw ** 2 + ch ** 2 + 1e-16
c2 = cw ** 2 + ch ** 2
# centerpoint distance squared
rho2 = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2)) ** 2 / 4 + ((b2_y1 + b2_y2) - (b1_y1 + b1_y2)) ** 2 / 4
if DIoU:
@@ -379,7 +379,7 @@ def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False):
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
with torch.no_grad():
alpha = v / (1 - iou + v + 1e-16)
alpha = v / ((1 + eps) - iou + v)
return iou - (rho2 / c2 + v * alpha) # CIoU

return iou

Loading…
Cancel
Save