|
|
@@ -11,7 +11,7 @@ from PIL import Image, ImageDraw |
|
|
|
|
|
|
|
from utils.datasets import letterbox |
|
|
|
from utils.general import non_max_suppression, make_divisible, scale_coords, xyxy2xywh |
|
|
|
from utils.plots import color_list |
|
|
|
from utils.plots import color_list, plot_one_box |
|
|
|
|
|
|
|
|
|
|
|
def autopad(k, p=None): # kernel, padding |
|
|
@@ -254,10 +254,10 @@ class Detections: |
|
|
|
n = (pred[:, -1] == c).sum() # detections per class |
|
|
|
str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string |
|
|
|
if show or save or render: |
|
|
|
img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np |
|
|
|
for *box, conf, cls in pred: # xyxy, confidence, class |
|
|
|
# str += '%s %.2f, ' % (names[int(cls)], conf) # label |
|
|
|
ImageDraw.Draw(img).rectangle(box, width=4, outline=colors[int(cls) % 10]) # plot |
|
|
|
label = f'{self.names[int(cls)]} {conf:.2f}' |
|
|
|
plot_one_box(box, img, label=label, color=colors[int(cls) % 10]) |
|
|
|
img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np |
|
|
|
if pprint: |
|
|
|
print(str.rstrip(', ')) |
|
|
|
if show: |